1	Green-top Guideline No. 42
2	Peer Review Draft – March 2025
3	
4	Shoulder Dystocia
5	
6	Katherine Lattey Cathy Winter VA Ellis Joanna F Crofts T Quick Grainne Bourke Tak Yeung
7	Leung Tim Draycott on behalf of the Royal College of Obstetricians and Gynaecologists
8	
9 10	Correspondence to: Royal College of Obstetricians and Gynaecologists, 10-18 Union Street, London SE1 1SZ, email: <u>clinicaleffectiveness@rcog.org.uk</u>
11 12 13 14	This is the third edition of this guideline. The first edition was published in 2005 under the same title and the second edition was published in 2012.
15	Key recommendations
16	
17	Health professionals should be vigilant and prepared to manage shoulder dystocia in every case
18	as it cannot be predicted or prevented. [Grade C]
19	• Fetal macrosomia is associated with an increased incidence of shoulder dystocia and neonatal
20	brachial plexus injury (BPI). [Grade C]
21	• Women with an estimated fetal weight (EFW) over 4000g should be provided with information
22	about the potential risks to both the woman and infant for the options available, that include
23	expectant care, induction of labour and planned caesarean birth. [Grade D]
24	• Planned caesarean or vaginal birth can both be appropriate after a previous shoulder dystocia.
25	The decision should be made jointly by the woman and the maternity team. [GPP]
26	• Routine traction in an axial direction can be used to diagnose shoulder dystocia but other
27	traction should be avoided. [Grade D]
28	 Shoulder dystocia should be managed systematically. [GPP]
29	 All maternity staff should participate in shoulder dystocia training at least annually. [GPP]
30	 Documentation should be accurate and comprehensive. [GPP]
31	
32	1. Purpose and scope
33 34	The purpose of this guideline is to review the current evidence regarding associated antenatal and
35	intrapartum risk factors and the management of shoulder dystocia. This guideline does not include
36	primary prevention of fetal macroscomia associated with gestational diabetes mellitus (GDM), as this is
37	discussed in the NICE GDM guideline. This guideline provides guidance for skills training for the
38	management of shoulder dystocia, but the practical manoeuvres are not described in detail as this
39	requires practical training.
40	
41	Owing to the emergency nature of shoulder dystocia, most published series examining procedures for
42	the management of this condition are retrospective case series or case reports. This limits the ability to
43	provide detailed evidence-based recommendations for specific aspects of care. Higher quality evidence
44	is available for training in shoulder dystocia. Areas of uncertainty are highlighted along with
45	recommendations for future research.
46	
47	This guideline is for healthcare professionals who care for women, non-binary and trans people with
48	shoulder dystocia.
49	
50	Within this document we use the terms 'pregnant woman' and 'women's health'. However, it is
51	important to acknowledge that it is not only people who identify as women for whom it is necessary to
52	access care. Obstetric and gynaecology services and delivery of care must therefore be appropriate,

inclusive and sensitive to the needs of those individuals whose gender identity does not align with thesex they were recorded at birth.

55 56 57

2. Introduction and background epidemiology

58 Shoulder dystocia is defined as a vaginal cephalic birth that requires additional obstetric manoeuvres to 59 release the impacted shoulder after the head has been born, and routine traction employed to deliver a 60 fetus has failed[1]. An objective diagnosis of a prolonged head-to-body delivery time of >60 seconds has 61 also been proposed, [2, 3]but these data are not routinely collected. Shoulder dystocia occurs when 62 either the anterior or, much less commonly, the posterior fetal shoulder impacts on the maternal 63 symphysis or sacral promontory respectively.

64

There is a wide variation in the reported incidence of shoulder dystocia[4]. Studies involving the largest number of vaginal births (34 800 to 267 228) report incidences between 0.58% and 0.70%[5-10]. However, almost all recent studies report increased rates of identification of shoulder dystocia after training[11, 12], which implies previous under-recording. A recent study reported under-coding of shoulder dystocia even where release manoeuvres had been performed; there was a three-fold increase in births coded with the ICD-10 for shoulder dystocia and the incidence of shoulder dystocia based on scrutiny of the medical records[13]. It is essential that shoulder dystocia is both recognised and recorded.

72

73 There can be significant perinatal morbidity and mortality associated with shoulder dystocia, even when 74 it is managed appropriately[7]. Maternal morbidity is increased, particularly postpartum haemorrhage 75 (11%) and obstetric anal sphincter injury (3.8%), with their incidence remaining unchanged by the number or type of manoeuvres required to effect birth[14, 15]. A study of 130 008 women from the USA 76 77 reported that the rate of composite maternal morbidity (including obstetric anal sphincter injury, 78 postpartum haemorrhage, blood transfusion, chorioamnionitis, endometritis, thromboembolism, 79 admission to intensive care unit and maternal death) was significantly higher among births with shoulder 80 dystocia, with third or fourth-degree perineal tears being most common (6.5% versus 2.7%)[16].

81

The risk of composite neonatal morbidity with shoulder dystocia was also significantly higher [16] (including Apgar score of <7 at 5 minutes, birth injury, neonatal seizure, hypoxic ischemic encephalopathy (HIE) or neonatal death), particularly birth injuries (RR 5.25) and hypoxic-ischaemic brain injury (RR 14.8.4).

86

Neonatal hypoxic-ischaemic morbidity associated with shoulder dystocia is rare but increasingly being
 recognised[17]. The risk of hypoxia appears to be related to the duration of the head body delivery
 interval (HBDI): the risk of HIE for HBDI <5 minutes was 0.5%, compared with 23.5% for HBDI >5 minutes
 (P < 0.001)[18]. Moreover, there was a drop in pH of 0.01 per minute HBDI[18].

91

92 Brachial plexus injury (BPI) is one of the most important fetal complications of shoulder dystocia, 93 complicating 2.3–16% of such births[7, 14, 19, 20]. Most cases resolve without permanent disability, with 94 fewer than 10% resulting in permanent brachial plexus dysfunction (BPI lasting more than 12 months) 95 [21]. A review of over 17 million births [22] demonstrated that the rate of neonatal BPI internationally 96 was 1.4 per 1000 total births and this rate has decreased to 0.5 per 1000 births for the most recent 97 publications. The likelihood of permanent BPI (>12 months) was 10–18% in the US-based reports and 98 19–23% in countries outside the US. A recent national study from Sweden reported a significant decrease 99 in BPI from 3.1 per 1000 births in 1997 to 1.0 per 1000 births in 2019, despite an increase in the incidence 100 of shoulder dystocia between 2005 and 2019 [12].

Neonatal BPI lasting >12 months has a significant effect on the affected individuals and their families:
 the overall mean utility scores, used to generate quality of life years (QALY) scores, for affected adults
 and parents of children with BPI were 0.56 and 0.80 respectively[23].

105

Neonatal BPI is the most common cause for litigation related to shoulder dystocia and one of the most frequently litigated obstetric related complications in the UK[24]. Medical theories around the causal relationships between birth, management of shoulder dystocia and neonatal BPIs have evolved and it is clear that conflating all BPIs is unhelpful[25]; there are likely to be different causes for BPI with and without shoulder dystocia and for temporary and permanent injuries.

111

There are data derived from computer modelling of births [26] and also physical models [27-29] demonstrating that uterine contractions during labour can be associated with force generation of up to 100 Newtons (equivalent to 10kg force), which may be a threshold for BPI[30]. This has led some clinicians to conclude that it would therefore be possible for the normal forces involved during labour to cause a BPI. However, brachial plexus ruptures require a stretch greater than 30%; average individual nerve rupture occurs at 37% +/- 6% stretch[31], whereas maternal forces cause less than 21% stretch of the brachial plexus in both mechanical (10–21% stretch) [27]and computer models (15.7% stretch)[26].

119

120 Recent data has demonstrated that permanent BPI may be more preventable than previously thought. There were no permanent BPI at all after shoulder dystocia for >17 000 consecutive births (now 28 000 121 122 births), or 562 births complicated by shoulder dystocia [11] in one centre. There were seven temporary 123 injuries in the same cohort, and this suggests that while propulsion-based injuries may exist, they are 124 likely to be a temporary neuropraxis, rather than a permanent injury. This improvement has been 125 replicated in the US[32, 33], New Zealand[34], Sweden[35], Finland [36] and most recently Spain[37]. 126 These data are consistent with the traction related mechanisms of injury proposed by 127 neurosurgeons[38].

128

The literature on causation of obstetric brachial plexus injury has influenced recent judicial decisions
 regarding the causation of obstetric BPI. Based on this literature and case law, a template was proposed
 to provide guidance for those assessing issues of causation in clinical negligence claims [39] and updated
 in 2018[25].

In the UK, there have been reports recommending training for shoulder dystocia since 1997[40]. Annual
 skill drills, including shoulder dystocia, have been recommended in the Royal College of Obstetricians
 and Gynaecologists (RCOG) shoulder dystocia guideline since 2005 [41] and they remain part of the NHS
 Resolution Maternity Incentivisation Scheme (MIS)[24].

138 139

140

3. Identification and assessment of evidence

141 This RCOG Guideline was revised in accordance with standard methodology for producing RCOG Green-142 top Guidelines. Publications within this subject area were sought using the sites and gateways laid out in 143 the RCOG clinical governance advice document, 'Searching for Evidence'.[42] The Cochrane Library 144 (including the Cochrane Control Register of Controlled Trials (CENTRAL) and the Database of Abstracts of 145 Reviews and Effects (DARE)) and Medline were searched using a combination of MeSH terms and 146 keywords. The search was restricted to articles published in English in humans between January 1980 and May 2023 Search terms included: 'shoulder dystocia', 'macrosomia', 'McRoberts' manoeuvre', 147 148 'obstetric manoeuvres', 'complications of labour/delivery', 'brachial plexus injury', 'Erb's palsy', 'Klumpke's palsy', 'symphysiotomy', 'Zavanelli manoeuvre', 'skill drills', 'rehearsal of obstetric 149 150 emergencies' and 'medical simulation'.

Reference lists of the articles identified were hand-searched for additional articles and experts within the field were contacted. Relevant key papers published prior to 1980 were also obtained and are referenced within this guideline. Where possible, recommendations are based on available evidence. Areas lacking evidence are highlighted and graded accordingly. Further information about the assessment of evidence and the grading of recommendations may be found in Appendix 1.

4. Prediction 158

159

4.1 Can shoulder dystocia be predicted?

160 161

Recommendation	Evidence quality	Strength	Rationale for the recommendation
Clinicians should be aware that shoulder dystocia is an unpredictable and therefore a largely unpreventable event.	2++	С	Conventional risk factors predicted only 16% of shoulder dystocia cases that subsequently resulted in infant morbidity.
Clinicians should be aware of existing risk factors but must be alert to the possibility of shoulder dystocia with any birth.	3	D	Risk assessment for the prediction of shoulder dystocia is insufficient for prevention.

162

163 Several antenatal and intrapartum characteristics have been reported to be associated with shoulder dystocia (Table 1), but statistical modelling has demonstrated that these risk factors have a low positive 164 predictive value both singly, and in combination[43, 44]. Conventional risk factors predicted only 16% of 165 166 shoulder dystocia cases that subsequently resulted in infant morbidity[45]. There is a relationship between fetal size and shoulder dystocia, [19]but it is not a good predictor. 76-91% of infants with a 167 168 birth weight of \geq 4500g do not develop shoulder dystocia [46] and, equally importantly, 48% of births complicated by shoulder dystocia occur with infants who weigh less than 4000g[6]. [Evidence level 2+ 169 170 and 3]

171

Infants of diabetic women have a two to fourfold increased risk of shoulder dystocia compared with 172 173 infants of the same birth weight born to non-diabetic women [19, 43]. This is not explained solely by 174 macrosomia[47]. [Evidence level 2+ and 3]

175

A retrospective case control study to develop a predictive model of risk for shoulder dystocia with injury 176 177 was published in 2006[48]. The authors reported that the best combination of variables to identify fetal injury associated with shoulder dystocia were maternal height and weight, gestational age at birth, parity 178 179 and estimated fetal weight at birth. A score over 0.5 detected 50.7% of the shoulder dystocia cases with 180 BPI, with a false positive rate of 2.7% [48]. However, the statistical modelling for this prediction tool was 181 based on actual birth weight and not estimated fetal weight. Clinical fetal weight estimation is unreliable 182 and third-trimester ultrasound scans have at least a 10% margin for error for actual birth weight and a 183 sensitivity of just 60% for macrosomia (over 4.5 kg)[49]. Similar problems have been reported in the 184 UK[50]. The use of shoulder dystocia prediction models cannot therefore be recommended[9, 50].

- 185 186 Table 1. Factors associated with shoulder dystocia
- 187

Pre-labour	Intrapartum
Previous shoulder dystocia	Induction of labour
Fetal macrosomia	Prolonged first stage of labour
Diabetes mellitus	Secondary arrest
Maternal body mass index >30 kg/m2	Prolonged second stage of labour
Race/ethnicity	Oxytocin augmentation
	Assisted vaginal birth

189 **5. Prevention of shoulder dystocia**

190

191 <u>5.1.1 Does macrosomia increase the risk of shoulder dystocia?</u>

192

192				
		Evidence		Rationale for the
	Recommendation	quality	Strength	recommendation
	Clinicians to be aware that fetal	2++	С	Evidence from systematic review
	macrosomia is associated with an			data.
	increased incidence of shoulder dystocia			
	and neonatal BPI.			
193				
194	Fetal macrosomia is a diagnosis based			·
195	around definition. A birthweight of 400	•	•	
196	chart using a population centile, and	•	•	
197	morbidity[51]. Birthweight over 4000g			
198	postpartum haemorrhage and perineal	• • • •		
199	shoulder dystocia and the associated co	nsequences[54	, 55]. [Eviden	ce level 2+ and 3]
200				
201	The scope of this guideline is confined		stocia and w	vill not discuss the management of
202	suspected fetal macrosomia more gener	rally.		
203				
204	Shoulder dystocia is strongly associated			
205	study the risk of shoulder dystocia was			
206	4250–4500g; 14.3% with birthweight o	of 4500–4750g;	and 21.0% i	n those with birthweight of 4750–
207	5000g[43]. [Evidence level 3]			
208	The successful in side as a factor on intermedia			an atal bus shiel slavus inium is 4.74
209	The overall incidence from an internation			
210	per 1000 live births[58]. The prevalence			
211	included pregnancies without diabetes,			÷ ,
212	in infants weighing less than 4000g; 18%	· · · · · · · · · · · · · · · · · · ·	•	•
213 214	the neurological severity of the BPI is po risk of permanent BPI was exponentially			
214	for infants weighing 4500g or more[60].		•	t. This fisk increased almost temold
215	for mants weighing 4500g of more[00].	Levidence level	2++j	
210	Finally, macrosomic babies are also at ar	n increased rick	of complicati	ions secondary to perinatal hypoxia
217	such as low Apgar scores and increased		•	
210	[Evidence level 2+ and 3]			
219				
220				

- 221 <u>5.1.2 How are macrosomic babies identified?</u>
- 222

	Evidence		Rationale for the
Recommendation	quality	Strength	recommendation
Clinicians should consider offering a	4	С	SFH is endorsed in NICE NG201.
biometry scan when the SFH is above the			
90th centile in the third trimester.			

223

NICE recommends serial SFH measurements for women with low-risk pregnancies [62, 63]. Ultrasound biometry is more accurate than SFH measurement for the antenatal identification of babies that maybe at risk of fetal macrosomia[64]. There is no current threshold for scanning for suspected fetal macrosomia, but it may be appropriate to offer a biometry scan for any SFH plotted on the 90th centile or more, in the third trimester. *[Evidence level 4]*

230 <u>5.1.3 What should be the mode of birth for suspected fetal macrosomia?</u>

		Evidence		Rationale for the
	Recommendation	quality	Strength	recommendation
	Women with an EFW over 4000g should be provided with information about the potential risks to both the woman and infant for the options available, that include expectant care, induction of labour and planned caesarean birth.	2+ and 3	D	This is considered good practice, based on evidence from systematic review data.
	Women should be counselled about their options for mode of birth using the Cochrane tool for suspected large for gestational age infants (EFW over 4000g at term).	4	GPP	Evidence from a Cochrane systematic review and considered good practice.[65]
2				
3 4 5 6 7	Previous international guidelines have rec women with an infant EFW of 4500g or mo or more[66-68]. However, there are no r between 4000–4500g.	ore, and/or n	on-diabetic v	vomen with an infant EFW of 5000g
8 9 0 1	After 37 ⁺⁰ weeks of gestation, the options predicted to be more than 4000g include risk of should dystocia) and planned caesa have consequences and should be bala	early inducti arean birth (t	on of labour o prevent sh	(IOL) (with the aim of reducing the oulder dystocia), but these options
	macrosomia in clinical practice, particularly			-
3 4 5 6 7 8 9	macrosomia in clinical practice, particularly A Cochrane Systematic review of four rando (EFW over 4000g) reported that in the IOL an 80% risk reduction in fractures[69]. The assisted vaginal birth, BPI or birth asphyxia tears (RR 3.70), but this increase was derive level 2++]	y the measur omised contr group there w here was no i. There was a	ement of SFH olled trials (R vas a 40% risl significant d ın increase in	H[64]. CTs) for suspected fetal macrosomia k reduction in shoulder dystocia and ifference in the rate of caesarean, the risk of third- and fourth-degree
3 4 5 6 7 8 9 0 1 2 3 4	A Cochrane Systematic review of four rando (EFW over 4000g) reported that in the IOL an 80% risk reduction in fractures[69]. The assisted vaginal birth, BPI or birth asphyxia tears (RR 3.70), but this increase was derive	y the measur omised contr group there w here was no . There was a ed from a sin uture from th n (before 38 ⁺⁰	ement of SFH olled trials (R vas a 40% risl significant d in increase in gle study in t e 'Big Baby tr weeks) to bo	H[64]. CTs) for suspected fetal macrosomia k reduction in shoulder dystocia and ifference in the rate of caesarean, the risk of third- and fourth-degree he systematic review[69]. <i>[Evidence</i> rial' in the UK[70]. On balance, there oth the neonate and the mother[71].
-3 -4 -5 -6 -7 -8 -9 -0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -0 -1 -2 -3 -4 -5 -6 -7 -7 -8 -9 -0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -0 -7 -8 -9 -0 -1 -2 -6 -7 -8 -9 -0 -1 -2 -7 -8 -9 -0 -1 -2 -7 -7 -8 -8 -9 -7 -7 -8 -8 -9 -7 -7 -8 -8 -9 -7 -7 -8 -8 -9 -7 -7 -8 -8 -9 -7 -7 -8 -8 -9 -7 -7 -8 -8 -9 -7 -7 -8 -7 -7 -8 -8 -7 -7 -8 -8 -7 -7 -8 -8 -7 -7 -8 -7 -7 -8 -7 -7 -8 -9 -7 -7 -8 -7 -7 -8 -9 -7 -7 -7 -8 -7 -7 -7 -7 -8 -7 -7 -7 -7 -7 -8 -9 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7	A Cochrane Systematic review of four rando (EFW over 4000g) reported that in the IOL an 80% risk reduction in fractures[69]. The assisted vaginal birth, BPI or birth asphysia tears (RR 3.70), but this increase was derive level 2++] More information will be available in the fu- are also potential risks of an early induction However, in the context of the risk of st	y the measur omised contr group there w here was no . There was a ed from a sin uture from th n (before 38 ⁺⁰ houlder dyst	ement of SFH olled trials (R vas a 40% risl significant d in increase in gle study in t e 'Big Baby tr weeks) to bo ocia, IOL ma	H[64]. CTs) for suspected fetal macrosomia k reduction in shoulder dystocia and ifference in the rate of caesarean, the risk of third- and fourth-degree he systematic review[69]. <i>[Evidence</i> rial' in the UK[70]. On balance, there oth the neonate and the mother[71]. y remain a reasonable option[72].
.3 .4 .5 .6 .7 .8 .9 .0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .0 .1 .5 .6 .7 .8 .9 .0 .1 .5 .6 .7 .8 .9 .0 .1 .5 .6 .7 .8 .9 .0 .1 .5 .6 .5 .6 .5 .6 .6 .7 .8 .9 .0 .1 .5 .6 .6 .5 .6 .5 .6 .6 .5 .6 .6 .5 .6 .6 .5 .6 .6 .5 .6 .5 .6 .5 .5 .6 .5 .5 .6 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5	A Cochrane Systematic review of four rando (EFW over 4000g) reported that in the IOL an 80% risk reduction in fractures[69]. The assisted vaginal birth, BPI or birth asphysia tears (RR 3.70), but this increase was derive level 2++] More information will be available in the fu- are also potential risks of an early induction However, in the context of the risk of sta [Evidence level 4] Wider considerations for IOL, including the	y the measur omised contr group there w here was no . There was a ed from a sin uture from th (before 38 ⁺⁰ houlder dyst e risks and be	ement of SFH olled trials (R vas a 40% risl significant d in increase in gle study in t e 'Big Baby tr weeks) to bo ocia, IOL ma	H[64]. CTs) for suspected fetal macrosomia k reduction in shoulder dystocia and ifference in the rate of caesarean, the risk of third- and fourth-degree he systematic review[69]. <i>[Evidence</i> rial' in the UK[70]. On balance, there oth the neonate and the mother[71]. y remain a reasonable option[72]. before 38 ⁺⁰ weeks of gestation, are
12 13 14 15 16 17 18 19 10 17 18 19 10 11 17 18 19 10 11 17 18 19 10 11 17 18 19 10 11 17 18 19 10 11 17 18 19 10 11 17 18 19 10 11 17 18 19 10 11 17 18 19 10 11 17 18 19 10 11 17 18 19 10 11 17 18 19 10 11 17 18 19 10 11 17 18 19 10 11 11 11 11 11 11 11 11 11 11 11 11	A Cochrane Systematic review of four rande (EFW over 4000g) reported that in the IOL an 80% risk reduction in fractures[69]. The assisted vaginal birth, BPI or birth asphysia tears (RR 3.70), but this increase was derive level 2++] More information will be available in the fu- are also potential risks of an early induction However, in the context of the risk of sta [Evidence level 4] Wider considerations for IOL, including the covered in the NICE guidelines [73].	y the measur omised contr group there w here was no . There was a ed from a sin uture from th (before 38 ⁺⁰ houlder dyst e risks and be	ement of SFH olled trials (R vas a 40% risl significant d in increase in gle study in t e 'Big Baby tr weeks) to bo ocia, IOL ma	4[64]. CTs) for suspected fetal macrosomia k reduction in shoulder dystocia and ifference in the rate of caesarean, the risk of third- and fourth-degree he systematic review[69]. <i>[Evidence</i> rial' in the UK[70]. On balance, there oth the neonate and the mother[71]. y remain a reasonable option[72]. before 38 ⁺⁰ weeks of gestation, are

Woman with a suspected large for	4	GPP	Based on the outcome of the
gestational age baby should be			Montgomery judgement and what
counselled about all options for their			is considered good practice by
labour and birth.			experts.

263

Consistent with the Montgomery judgement [74], women expecting an infant with an EFW over 4000g 264 265 should be provided with information about the risks and benefits for both the woman and infant and the 266 options available. These options should include expectant care, IOL and planned caesarean birth.

267

268 The RCOG has published patient information for planned caesarean birth [75] which includes a shared decision-making tool for IOL at term, from the Cochrane group for suspected large for gestational age 269 270 infants (EFW over 4000g at term) (Appendix 2). These tools and information should be shared with 271 women and they should be supported in their choices.

272

273 5.2.1 What should be discussed with a pregnant woman who has experienced shoulder dystocia in a 274 previous pregnancy?

275

Recommendation	Evidence quality	Strength	Rationale for the recommendation
Women with a previous shoulder dystocia should be given options for their labour and birth in future pregnancies.	4	GPP	Based on evidence from large cohort studies and expert opinion.

276

277 Women with a previous shoulder dystocia should be provided with information about the potential risks 278 and the options available, including expectant care, IOL and planned caesarean birth. This discussion should make use of available tools (Appendix 2) and may need to occur at different time intervals during 279 280 the pregnancy, taking into account any fetal growth ultrasound scans or other clinical information available. 281 282

- 283
- 5.2.2 What is the appropriate mode of birth after a previous episode of shoulder dystocia? 284

-		
Recommendation	Evidence quality Strength	Rationale for the recommendation
Planned caesarean or vaginal birth ca both be appropriate after a previous shoulder dystocia. Healthcare professionals must provide informati about the risks and benefits of each option to enable the pregnant woma make an informed decision about the care.	on n to	Based on evidence from large cohort studies and expert opinion.

285

286 The rate of shoulder dystocia after a previous shoulder dystocia has been reported to be 10 times higher than the rate in the general population [76]. There is a reported recurrence rate of shoulder dystocia of 287 288 between 1% and 25% [6, 10, 44, 76-80]. However, this may be an underestimate owing to selection bias, 289 as caesarean birth may have been more commonly advocated for pregnancies after severe shoulder 290 dystocia, particularly with a poor neonatal outcome. [Evidence level 2+ and 3]

291 292

293 6. Management of shoulder dystocia

295 6.1 What measures should be taken when shoulder dystocia is anticipated?

296

	Recommendation	Evidence quality	Strength	Rationale for the recommendation
	All birth attendants should be aware of the signs for diagnosis of shoulder dystocia and the techniques required to facilitate birth (Appendix 3).	4	GPP	This is considered good practice.
	Prophylactic McRoberts' positioning before delivery of the fetal head is not recommended to prevent shoulder	4	GPP	Based on a single randomised trial.
	dystocia.			
297				
298	Risk factors for shoulder dystocia have bee	en described	in Table 1 an	d decisions on place of birth should
299	be made jointly between them and the ma	ternity team	. However, as	s shoulder dystocia is unpredictable,
300	all birth attendants in all settings should b	pe confident	to perform t	he release manoeuvres required to
301	manage shoulder dystocia.			
302				
303	There is no evidence that the use of the	McRoberts' ı	manoeuvre k	efore clinical diagnosis of shoulder
304	dystocia prevents shoulder dystocia[81]. Therefore	, prophylact	ic McRoberts' positioning is not
305	recommended to prevent shoulder dystoc	ia. <i>[Evidence</i>	level 3]	•
306				
307	6.2 How should shoulder dystocia be diagn	osed?		
308		$\mathbf{N}\mathbf{V}$		

Recommendation	Evidence quality S	trength	Rationale for the recommendation
Birth attendants should routinely look for the signs of shoulder dystocia.	4	GPP	This is considered good practice.
Routine traction in an axial direction can be used to diagnose shoulder dystocia but other traction should be avoided.	3	D	This is considered good practice and based on evidence from an experimental study in 1979 that has not been repeated.

309

312

313 314

Timely management of shoulder dystocia requires prompt recognition. The birth attendant should routinely observe for:

- difficulty with birth of the face and chin
 - the head remaining tightly applied to the vulva or even retracting
 - failure of restitution of the fetal head
 - failure of the shoulders to descend.
- 316 317

315

There are case reports of birth attendants applying excessive traction sufficient to cause severe spinal cord injury [82] and decapitation[83]. Routine traction is defined as 'traction required for delivery of the shoulders in a spontaneous vaginal birth where there is no difficulty with the shoulders' [84] (also called diagnostic traction). More traction than this should be avoided. The direction and nature of traction are also important. Evidence from cadaver studies suggests that lateral and downward traction[85], and rapidly applied traction [84] are more likely to cause nerve avulsion. In a Swedish series, downward

- traction on the fetal head was strongly associated with BPI and had been employed in all cases of residual
- 325 BPI at 18 months old[38]. Routine 'axial' traction should be employed at all births i.e. traction in line with
- 326 the fetal spine without lateral deviation and downward should always be avoided. [Evidence level 3]
- 327

- 328 329
- 330 6.3 Management of shoulder dystocia
- 331332 <u>6.3.1 How should shoulder dystocia be managed?</u>
- 333

Recommendation	Evidence	Chanach	Rationale for the recommendation
Shoulder dystocia should be managed	quality 4	Strength GPP	Based on retrospective
systematically (see Appendix 3).	1	GFF	observational studies in simulation training.
Immediately after recognition of shoulder dystocia, additional help should be called. Maternal pushing should be discouraged.	4	GPP	Maternal pushing may lead to further impaction of the shoulders.
The problem should be stated clearly as 'this is shoulder dystocia' to the arriving team.	4	GPP	Based on retrospective observational studies in simulation training.
Fundal pressure should not be used.	3	D	Based on a single prospective population-based case control study and review of cases in national enquiries.
External manoeuvres such as McRoberts' and suprapubic pressure should be performed first.	3	D	Based on experimental data and retrospective observational studies.
An episiotomy (after the fetal head has been born) is only needed if vaginal access cannot be easily achieved for internal manoeuvres.	3	D	Based on retrospective observational studies.
Attempt each manoeuvre following a systematic approach. There is a no need to attempt each manoeuvre for 30	3	D	Based on retrospective observational studies in simulated

seconds. If a manoeuvre is unsuccessful, move straight on to the next manoeuvre in the algorithm. and real-life obstetric emergencies.

334

The Confidential Enquiry into Stillbirths and Deaths in Infancy (CESDI) report on shoulder dystocia identified that 47% of the babies who died did so within five minutes of the head being born; however, in a high proportion of the cases the baby had a pathological cardiotocograph prior to the shoulder dystocia[40]. A group from Hong Kong reported that there was a very low rate of hypoxic ischaemic injury for delays in birth of the shoulders of up to five minutes[18]. It is important, therefore, to manage the problem as efficiently as possible to avoid hypoxia acidosis, but also as carefully as possible, to avoid unnecessary trauma. *[Evidence level 3 and 4]*

342

348

NHS Resolution (a body of the Department of Health and Social Care in the UK, that provide expertise on resolving concerns and disputes) has published a small series on infants with hypoxic brain injuries following shoulder dystocia with a median head-to-body delivery interval of seven minutes. It is likely that a more effective and efficient execution of the release manoeuvres would have reduced the headto-body delivery interval[66, 86], thereby reducing the risk of hypoxic brain injury. [Evidence level 4]

There does not appear to be an advantage in trying each of the release manoeuvres for 30 seconds, as it is likely to increase the head-to-body delivery interval, and therefore the risk of hypoxic injury, without improving success rates. It is recommended to perform a manoeuvre, but if it is unsuccessful, to move straight on to the next manoeuvre in the algorithm, without waiting 30 seconds each time. *[Evidence level 4]*

354

357

Managing shoulder dystocia according to the RCOG algorithm (see Appendix 3) has been associated with improved perinatal outcomes[20]. [Evidence level 3]

Help should be summoned immediately. In a hospital setting, this should include further midwifery assistance, a senior obstetrician, a neonatal resuscitation team and an anaesthetist[87]; this is often done through the user of emergency buzzer or obstetric emergency bleep or call. In a stand-alone midwifery-led or home birth setting, the summoned help should include calling for a paramedic/ambulance team and contacting the nearest obstetric unit. [Evidence level 4]

363

367

370

Clearly communicating the problem early to the team has been associated with improvements in outcomes in shoulder dystocia [88] and improved performance in other obstetric emergencies[89]. [Evidence level 3]

368 Maternal pushing should be discouraged, as this may lead to further impaction of the shoulders, 369 potentially exacerbating the shoulder impaction[26].

Fundal pressure should not be used during the management of shoulder dystocia[40]. It is associated with a higher rate of BPI [38] and may result in uterine rupture[45]. [Evidence level 3]

McRoberts' manoeuvre requires the woman to be positioned lying flat with hips flexed so that their thighs are resting on their abdomen[90]. It straightens the lumbosacral angle, rotates the maternal pelvis cephalad and increases the relative anterior-posterior diameter of the pelvis[91]. McRoberts' manoeuvre is an effective intervention, with previous reported success rates as high as 90%[8, 14, 92, 93]. More recently, lower rates of success of McRoberts' +/- suprapubic pressure have been reported: 25.8% in Hong Kong [94] and 47.8% in association with a reduction in BPI and the head-body delivery interval in the UK[11]. *[Evidence level 2+ and 3]*

A recent systematic review of the success rates of shoulder dystocia release manoeuvres reported McRoberts' +/- suprapubic pressure was 56% successful, internal rotational methods 62.4% successful, and release of the posterior arm was successful in 86.1% of births where it was attempted[95]. *[Evidence level 2++]*

387 McRoberts' manoeuvre has a low rate of complication and is one of the least invasive manoeuvres, and 388 therefore should be employed first. The woman should be laid flat and any pillows should be removed 389 from under their back. With one assistant on either side, their legs should be hyper-flexed. In the 390 lithotomy position, there is no advantage to straightening the legs initially, compared to moving directly 391 to McRoberts' from lithotomy [94]. If they are in lithotomy position in maternity theatres, the woman's 392 legs can be kept in the leg supports/'boots', and the supports moved from the abducted lithotomy 393 position to a hyper-flexed 'thighs to abdomen' position. Effective McRoberts' manoeuvre requires the 394 maternal buttocks to be raised off the bed during the flexion of the maternal hips[96]. Routine axial 395 traction (the same degree of traction applied during a normal birth) can then be applied to the fetal head 396 to assess whether the shoulders have been released (see Appendix 4). [Evidence level 4]

397

402

386

Supra-pubic pressure can be employed together with McRoberts' manoeuvre to improve success rates[14]. Supra-pubic pressure reduces the fetal bi-sacromial diameter and rotates the anterior fetal shoulder into the wider oblique pelvic diameter. The shoulder is then freed to slip underneath the symphysis pubis with the aid of routine traction[92]. *[Evidence level 4]*

Supra-pubic pressure should be applied by an assistant from the side of the fetal back in a downward and lateral direction just above the maternal symphysis pubis. This reduces the fetal bi-sacromial diameter by pushing the posterior aspect of the anterior shoulder towards the fetal chest. CPR hands, where the assistant has the heel of one hand over the top of the other hand, are often recommended to achieve effective supra-pubic pressure, but there are no published data to support a 'rocking' movement (see Appendix 4). [Evidence level 4]

409

Only routine axial traction should be applied to the fetal head when assessing whether the manoeuvre
 has been successful. Again, if the anterior shoulder is not released with supra-pubic pressure and routine
 axial traction, then the next manoeuvre in the algorithm should be attempted. [Evidence level 4]

413

An episiotomy (performed after the baby's head has been born) will not relieve the bony obstruction of shoulder dystocia, but may be required to allow the assistant more space to facilitate internal vaginal manoeuvres. The use of an episiotomy does not decrease the risk of BPI with shoulder dystocia[97]. An episiotomy should therefore only be considered to facilitate vaginal access for internal manoeuvres such as delivery of the posterior arm or internal rotation of the shoulders[98]. Most often, the perineum has already torn as the baby's head is born, or an episiotomy has already been performed to facilitate the birth of the baby's head. [Evidence level 3]

- 422 McRoberts' (and/or suprapubic pressure) alone is not as effective as previously thought[11]. Therefore, 423 there should be early recourse to internal manoeuvres if simple measures (McRoberts' manoeuvre and 424 suprapubic pressure) are unsuccessful. *[Evidence level 4]*
- 425

421

The most spacious part of the maternal pelvis is in the sacral hollow; therefore, vaginal access should be gained posteriorly, into the sacral hollow (see Appendix 5). The whole hand should be entered posteriorly to perform internal rotation or delivery of the posterior arm[99]. The woman should be brought to the end of the bed, or the end of the bed should be removed, to make internal manoeuvres easier. Delivery of the fetal shoulders may be facilitated by rotation into an oblique diameter or delivery of the posterior arm[100]. [Evidence level 4]

Internal rotational manoeuvres were originally described by Woods [101] and Rubin[102]. The shoulders should be rotated by approximately 20 degrees into the wider oblique diameter, resolving the shoulder dystocia. Rotation can be most easily achieved by pressing on the anterior or posterior aspect of the posterior shoulder with directed suprapubic pressure applied externally by another attendant, to rotate the anterior shoulder into a matching oblique diameter (see Appendix 4)[11]. [Evidence level 4]

438

Delivering the posterior arm reduces the impaction of the fetal shoulders. The fetal wrist should be grasped, and the posterior arm should be gently withdrawn from the vagina in a straight line (see Appendix 4)[99]. Delivery of the posterior arm has previously been associated with humeral fractures with a reported incidence between 2% and 12% [7, 20] but training has been associated with reductions in the incidence of humeral fracture[11]. *[Evidence level 4]*

444

445 There are no randomised comparative studies available comparing delivery of the posterior arm and internal rotation. Some authors favour delivery of the posterior arm over other manoeuvres[93, 103], 446 447 particularly where the woman has a raised body mass index[104]. Others have reported that rotational 448 methods and posterior arm delivery were similarly successful, but rotational manoeuvres were 449 associated with reductions in both BPI and humeral fractures [94] compared to delivery of the posterior 450 arm (3% to 1%). Therefore, the healthcare professional should base their decision on their training, 451 clinical experience, and the prevailing clinical circumstances. Shoulder dystocia requires emergency expert care that cannot always include consultation with the woman and her attendants. [Evidence level 452 453 4]

454

The all-fours position has been described, with an 83% success rate in one case series[105]. The individual circumstances should guide the assistant whether to try the all-fours technique before or after attempting internal rotation and delivery of the posterior arm. For a mobile person without epidural anaesthesia and with a single midwifery attendant, the all-fours-position can be appropriate. If there are other clinical features that make this potentially more unsafe, then employing internal manoeuvres in McRoberts position may be more appropriate. [Evidence level 3 and 4]

462 6.4.1 What measures should be taken if first- and second-line manoeuvres fail?

463

461

	Evidence		Rationale for the	
	Recommendation	quality	Strength	recommendation
	Third-line manoeuvres require careful	4	GPP	Based on expert opinion, enquiries
	consideration by the assistant to avoid			and small cohort studies.
	unnecessary maternal morbidity and			
	mortality.			
464				

465 It is difficult to recommend an absolute time limit for the management of shoulder dystocia, as there are 466 no conclusive data available, but there appears to be a very low rate of hypoxic ischaemic injury with a 467 head to body birth interval of under five minutes[18]. [Evidence level 3]

468

Several third-line methods have been described for those cases resistant to all standard measures. These
 include fetal cleidotomy, maternal symphysiotomy (dividing the symphyseal ligament) and the Zavanelli
 manoeuvre. It is rare that these are required. *[Evidence level 4]*

472

Vaginal replacement of the head (Zavanelli manoeuvre), and then delivery by caesarean birth has been described[106, 107]. Success rates (birth by caesarean) in case series vary, the most recent review of 110 cases was 89% but with the reporting bias associated with a case series[108]. Intuitively, the Zavanelli manoeuvre may be most appropriate for rare bilateral shoulder dystocia, where both the shoulders impact on the pelvic inlet, anteriorly above the pubic symphysis and posteriorly on the sacral promontory. There is limited evidence around maternal and neonatal safety for this procedure; a high
proportion of fetuses have irreversible hypoxia-acidosis by this stage and it may not reduce the risk of
BPI[109]. [Evidence level 4]

- Similarly, symphysiotomy has been suggested as a potentially useful procedure, both in the developing [110, 111] and developed [112] world. However, there can be serious maternal morbidity and poor neonatal outcome[113]. *[Evidence level 4]*
- 486 6.4.2 Other management options
- 487

485

RecommendationqualityStrengthrecommendationDigital axillary traction of the posterior4DBased on retrospectic review ofarm can be considered for theclinical records after introducingmanagement of shoulder dystocia,the maneouvre as a third-lineparticularly where standard manoeuvresmanagement strategy.have failedb		Evidence		Rationale for the
arm can be considered for theclinical records after introducingmanagement of shoulder dystocia,the maneouvre as a third-lineparticularly where standard manoeuvresmanagement strategy.	Recommendation	quality	Strength	recommendation
nave fanca.	arm can be considered for the management of shoulder dystocia,	4	D	clinical records after introducing the maneouvre as a third-line

488

In addition to the recommended standard manoeuvres[68]; a number of other manoeuvres have been described for consideration, including the 'Carit manoeuvre' [114] and 'shoulder shrug'[115]. However, the published series for these manoeuvres are extremely small and there are insufficient data to recommend their use without additional studies. Furthermore, the use of 'digital hooking' of the anterior axilla [116] does not seem biologically plausible because direct access to the anterior axilla is extremely difficult, if not impossible. *[Evidence level 4]*

496 Positive results have been described for digitally applied axillary traction to the posterior arm and in a 497 small series for sling traction also to the posterior arm[117, 118]. Digital axillary traction to the posterior 498 axilla appears safe and effective as an internal manoeuvre[119], although there is a theoretical increased 499 risk of humeral fracture. [Evidence level 4]

500

505

501 The successful use of an axillary sling with rotation has also been reported for an intrauterine fetal death 502 where other methods failed[120]. However, a more recent report described a serious complication 503 caused by a sling: a neonatal degloving injury of the posterior fetal arm that required surgical treatment. 504 [121]

506 In the largest published series of shoulder dystocia training[11], none of these alternative manoeuvres 507 were required and it seems pragmatic that training should focus on the standard release manoeuvres 508 first, with possible inclusion of digital or sling axillary traction where other release manoeuvres have not 509 been successful. However, it is important that staff are trained in these alternative techniques prior to 510 using them. [Evidence level 3]

511

512 6.5 How should shoulder dystocia be managed in different birth settings?

513 Evidence Rationale for the Recommendation quality Strength recommendation The management of shoulder dystocia 4 **GPP** Based on expert opinions and should be consistent across all birth national enquiries. settings. GPP If shoulder dystocia is diagnosed in a pool 4 Based on expert opinions and birth setting, women should be advised national enquiries.

to exit the pool to allow the appropriate
maneouvres to be accurately performed.

515 Shoulder dystocia is a high-risk event in all birth settings: there was a five-fold increase in the risk of 516 neonatal admission after shoulder dystocia outside hospital obstetric units compared to births without 517 shoulder dystocia[122]. The management of shoulder dystocia should be consistent across all birth 518 settings. [Evidence level 4]

519

520 Effective performance of the standard release manoeuvres is required for all births complicated by 521 shoulder dystocia, including pool births. There are descriptions of asking women to stand up in the pool 522 and/or stand with one leg on the side of the pool when shoulder dystocia has been diagnosed during a 523 water birth (communication – NHS Resolution) that put the woman at risk of slipping, and moreover, no 524 release manoeuvres can be performed in that position.

525

Therefore, as soon as there is delay with birth of the shoulders and shoulder dystocia is suspected, help should be summoned; the woman asked to exit the pool so that shoulder dystocia can be confirmed, and the appropriate care performed safely and effectively. The standard release manoeuvres can be used, including positioning the woman on all fours [66] where required. Risks of shoulder dystocia and how to manage it, should be included as part of antenatal discussions about place of birth. *[Evidence level 4]*

531

533

532 6.6 What is the optimum care for the baby after shoulder dystocia?

Recommendation	Evidence quality Stren	Rationale for the gth recommendation
The birth attendant should alert the neonatal resuscitation team, if in a hospital setting, via a neonatal emergency call. In a stand-alone midwifery-led or home birth setting, the birth attendant should prepare neonatal resuscitation equipment and alert the paramedic ambulance team. The baby should be examined for injury by a neonatal clinician.	4 GP	

534

A recent neonatal review of infants born with HIE after shoulder dystocia [124] identified there was often a discrepancy between umbilical cord gases and neonatal condition that may be related to poor sampling and/or cord compression at the shoulder dystocia. There was a recommendation to continue to robustly sample umbilical cord gases, but alert the neonatology team to not be falsely reassured by apparently normal gases. *[Evidence level 4]*

540

It is recognised from clinical experience that infants with birth complicated by shoulder dystocia may show an unexpectedly delayed response to resuscitation and possible mechanisms have been proposed including fetal hypovolaemia due to placental sequestration of blood or prolonged bradycardia secondary to excessive vagal stimulation[125-127]. [Evidence level 4]

545

546 Practical points proposed include neonatal resuscitation in combination with timely cord clamping, and 547 early use of volume replacement where there is delay in response to resuscitation[124]. Combining 548 obstetric and neonatal training may be useful to improve communication in this situation. During this 549 time the woman and their birth partner should be kept continuously updated about ongoing care for the

550	baby.
551	
552	The baby should be examined for injuries which may include BPI and other reported injuries, including
553	fractures of the humerus and clavicle, pneumothoraces and hypoxic brain damage[128].
554	
555	Referral for specialist opinion
556	
557	The baby should be examined for injury and asymmetric upper limb movements by the neonatal team
558	with early recourse for a peripheral nerve specialist opinion. All babies with a diagnosis of BPI should be
559	referred before discharge to the local paediatric physiotherapy and information about the diagnosis
560	shared with the parents. There is currently no national pathway for referral in the UK, but guidance from
561	two of the specialist referral centres (Leeds and Stanmore) recommend the following criteria for
562	immediate outpatient referral to a specialist centre:
563	
564	 Any BPI affecting the hand (with no flexion in the fingers - with or without a Horner's syndrome)
565	• Any BPI where there is a failure to return to normal symmetrical upper limb movement by 4 weeks
566	Any child with bilateral BPI. [Evidence level 4]
567	
568	6.7 What is optimal care for women after shoulder dystocia?
569	

Recommendation	Evidence quality	Strength	Rationale for the recommendation
Birth attendants should be alert to the possibility of postpartum haemorrhage and severe perineal tears.	4	GPP	This is considered good practice and based on evidence available from observational studies.
An explanation of the birth should be given to the woman and their birth partner.	4	GPP	This is considered good practice.

⁵⁷⁰

After birth, the birth attendants should be alert to the possibility of postpartum haemorrhage (11%) and third- and fourth-degree perineal tears (3.8%)[11]. Other reported complications include vaginal lacerations[96], cervical tears, bladder rupture, uterine rupture, symphyseal separation, sacroiliac joint dislocation and lateral femoral cutaneous neuropathy[123]. *[Evidence level 3]*

575

A discussion which includes an explanation of the birth should be offered to the woman and their birth partner. This should include an opportunity for them to debrief, ask questions and plan for follow-up. An information leaflet or letter should be offered to women, including sources of support and how to raise questions in the future. [Evidence level 4]

580

581 Debriefing staff involved can also be beneficial, both in the short-term and the option of a debrief after 582 a period time, if needed by team members, to talk through the case. This allows learning to be gained 583 and gives space to raise any concerns or examples of excellence. There is no single correct way to debrief 584 and the style chosen will depend on the emergency itself and the staff involved. 585

- 7. Risk management
- 588 7.1 Training
- 590 <u>7.1.1 What are the recommendations for training?</u>

586

587

	Recommendation	Evidence quality	Strength	Rationale for the recommendation	
	All maternity staff should participate in shoulder dystocia training at least annually.	4	GPP	On balance of evidence available from retrospective observational studies.	
592					
593	The fifth CESDI report recommended that	a 'high level o	of awareness	and training for all birth attendants'	
594	should be observed[40]. Annual 'skill drills', including shoulder dystocia, have been recommended jointly				
595	by both the Royal College of Midwives and the RCOG [129] and are one of the requirements in the				
596	Maternity Incentivisation Safety Actions required by NHS Resolution. This recommendation is based on				
597	evidence that skills were maintained thr	ough yearly	training of n	naternity staff in the UK[130]. The	
598	Ockenden Report also clearly stated that s	staff that wor	k together sh	ould train together, highlighting the	
599	importance of multi-professional training.	[Evidence lev	vel 4]		
600					
601	7.1.2 What is the evidence for shoulder dy	stocia trainin	<u>g?</u>		

602

	Evidence		Rationale for the
Recommendation	quality	Strength	recommendation
All staff should be trained locally, annually and provided with the opportunity to practice all manoeuvres using a high-fidelity model in a multi- professional setting.	2+	с	Evidence from a systematic review regarding training.

603

Despite the similarity of the manoeuvres taught, not all training for shoulder dystocia is either equal, or effective in improving outcomes[131-134]. A systematic review of interventions to decrease the complications after shoulder dystocia concluded that training was associated with decreases in the rate of BPI after shoulder dystocia[132], but the data on BPI lasting more than 12 months were less clear. [Evidence level 2++]

609

However, training has been associated with reductions in neonatal injury, particularly fractures and
brachial plexus injuries[11, 119, 135, 136], including BPI lasting >12 months, in multiple settings globally.
In many studies practical shoulder dystocia training has been shown to improve knowledge[137],
confidence [138] and management of simulated shoulder dystocia[139-142]. Training has also been
shown to improve the patient-actors perception of their care during simulated shoulder dystocia[143]. *[Evidence level 1–]*

616

An eight-year retrospective review of shoulder dystocia management before and after the introduction of annual shoulder dystocia training for all staff in one UK hospital, demonstrated a significant reduction in neonatal injury at birth following shoulder dystocia: 9.3% pre-training, 2.3% post-training[20]. There are multiple other reports of improvements after training[32, 33, 35, 36, 88, 119, 144, 145]. *[Evidence level 3]*

622

623 Shoulder dystocia training associated with improvements in clinical management and neonatal 624 outcomes was multi-professional, with manoeuvres demonstrated and practiced on a high-fidelity 625 manikin. Teaching used the RCOG algorithm rather than staff being taught mnemonics (e.g. HELPERR) or eponyms (e.g. Rubin's and Woods' screw)[11, 119, 135, 136]. With this evidence all staff should be 626 trained locally, annually and provided with the opportunity to practice all the manoeuvres required to 627 628 release the shoulder impaction using a high-fidelity model and with a multi-professional team. Hospitals 629 should also monitor their neonatal injury rate after the introduction of training to ensure it is effective. 630 [Evidence level 2–]

- 632 Effective training for shoulder dystocia is extremely cost effective with cost savings of more than £1
- 633 million per quality-adjusted life year (QALY) saved[146].
- 634
- 635 7.1.3 What measures can be taken to ensure optimal management of shoulder dystocia?
- 636

	Evidence		Rationale for the
Recommendation	quality	Strength	recommendation
It is useful to demonstrate the	4	GPP	On balance of evidence available
manoeuvres in direct view, as they are			from retrospective observational
complex and difficult to understand by			studies.
description alone.			

637

Practical training using manikins has been associated with improvements in management in simulation[139-142] and in real life[20, 32, 33, 35, 36, 119, 145].

640

The largest trial of shoulder dystocia training reported that before training only 43% of midwives and doctors could successfully manage a severe shoulder dystocia simulation within five minutes[140]. Three weeks after a 40-minute simulation training session 83% of staff were able to successfully complete the birth. Training on a high-fidelity manikin was more successful than training with lower fidelity rag doll and pelvis - with a significantly higher successful delivery rate (95% versus 72%), a shorter head-to-body interval and a lower total applied force[140]. *[Evidence level 3]*

- 648 Moreover, the traction used in simulated shoulder dystocia can be excessive[29, 147], but training using 649 models which include force monitoring measurement has been shown to reduce the traction used by 650 staff during simulated shoulder dystocia[29, 148, 149]. [*Evidence level 3*]
- 651
- 652 7.2 Documentation what should be documented?
- Evidence
 Rationale for the

 Recommendation
 quality
 Strength
 recommendation

 Documentation should be accurate and comprehensive.
 4
 GPP
 This is considered good practice and from relevant medico-legal cases.

654

The sixth CESDI annual report highlighted inadequate documentation in obstetrics, with potential 655 medico-legal consequences [150]. Poor documentation of shoulder dystocia management has been 656 657 highlighted [13, 151, 152] and there are recommendations that documentation should be included in shoulder dystocia training[151]. Contemporaneous documentation of the time of arrival of the multi-658 659 professional team and key clinical actions taken should be undertaken through an allocated staff 660 member during the emergency. The use of a structured pro forma has been proposed to improve accurate record keeping in the clinical setting [153] and there is some evidence that they are 661 662 effective[154]. [Evidence level 2+]

663

665

667 668

669 670

664 An example is provided in Appendix 5.

666 It is important to record the [153, 155]:

- staff in attendance and the time they arrived
- time of birth of the baby's head and time of birth of their body
- direction of the anterior shoulder at the time of the dystocia

671	 manoeuvres performed, their timing and sequence
672	maternal perineal and vaginal examination
673	estimated blood loss
674	 general condition of the baby (Apgar score)
675	 neonatal assessment of baby
676	 paired umbilical cord gases
677	maternal debrief.
678	
679	It is particularly important to document at birth the direction the baby was facing or the side of the fetal
680	back in relation to the woman as this facilitates identification of the anterior and posterior shoulders
681	during the birth.
682	All estimate and expects of some should be explained to warmen, and their highly partner to a mussing
683 684	All actions and aspects of care should be explained to woman and their birth partner as a running commentary throughout the obstetric emergency. This can also aid their debrief following the birth. It
685	will also be important when informing their choice in future pregnancies.
686	win diso se important when morning their choice in ratal e pregnancies.
687	8. Future research
688	
689	• Tools to personalise care and share information with women with suspected fetal macrosomia.
690	 Research to identify the key elements of effective training.
691	
692	9. Auditable topics
693	
694	 Incident reporting of shoulder dystocia
695	 Critical analysis of manoeuvres used in the management of shoulder dystocia
696	 Neonatal team called at diagnosis of shoulder dystocia
697	Document of the event
698	 Performance of cord blood gas analysis
699	 Monitoring neonatal injury
700	Staff attendance at annual training
701	Discussion of events with parents
702	
703	10. Useful links and support groups
704 705	An information leaflet for parents titled 'Shoulder dystocia' has been produced by the RCOG and is
706	available online (https://www.rcog.org.uk/media/dpfhou15/pi-shoulder-dystocia.pdf).
707	available on the (https://www.reog.org.ak/media/apmodis/pronodis/pronodia/privale/aystocia.par/.
708	The Erb's Palsy Group (www.erbspalsygroup.co.uk) provides an excellent support network for children
709	and families affected by BPI.
710	
711	Glossary of terms
712	
713	 Apgar – an assessment of a baby soon after it is born including include colour, heart rate, reflexes,
714	muscle tone, and respiration.
715	• Brachial plexus injury – damage to the nerves in the neck which can cause weakness, pain and
716	numbness.
717	 Gestational diabetes – diabetes (high blood sugars) diagnosed for the first time during pregnancy.
718	Hypoxic ischaemic encephalopathy - a type of brain injury that occurs when the brain experiences a degraphic in purgen or blood flow
719	a decrease in oxygen or blood flow.

700		
720	•	Horner's syndrome – condition caused by an interruption of the sympathetic nervous system to
721		the eye leading to miosis (constricted pupil), ptosis (dropping of the upper eyelid), anhidrosis
722		(absence of sweating of the face) and enopthalmos (the eye sinking deeper into the socket).
723		Secondary arrest – when there is no further progress in labour during the second stage.
724	•	Specialist centre – a healthcare facility that offers services that are not available in all local units.
725		These centres are often involved in the care of rare or complex conditions.
726	٠	Suspected fetal macrosomia - a baby that is believed to be large for its gestational age, defined for
727		the purposes of this guideline as an estimated fetal weight above the 95th percentile, at or after
728		36 ⁺⁰ weeks of pregnancy.
729		
730	Refer	rences
731	1.	Resnick, R., Management of shoulder dystocia girdle. Clin Obstet Gynecol, 1980. 23: p. 559-564.
732	2.	Spong, C.Y., et al., An objective definition of shoulder dystocia: prolonged head-to-body delivery
733		intervals and/or the use of ancillary obstetric maneuvers. Obstet Gynecol, 1995. 86(3): p. 433-6.
734	3.	Beall, M.H., et al., Objective definition of shoulder dystocia: a prospective evaluation. American
735		journal of obstetrics and gynecology, 1998. 179 (4): p. 934-7.
736	4.	Gherman, R.B., Shoulder dystocia: an evidence-based evaluation of the obstetric nightmare.
737		Clin Obstet Gynecol, 2002. 45 (2): p. 345-62.
738	5.	McFarland, M., et al., Are labor abnormalities more common in shoulder dystocia? Am J Obstet
739		Gynecol, 1995. 173 (4): p. 1211-4.
740	6.	Baskett, T.F. and A.C. Allen, Perinatal implications of shoulder dystocia. Obstet Gynecol, 1995.
741		86 (1): p. 14-7.
742	7.	Gherman, R.B., J.G. Ouzounian, and T.M. Goodwin, Obstetric maneuvers for shoulder dystocia
743		and associated fetal morbidity. Am J Obstet Gynecol, 1998. 178 (6): p. 1126-30.
744	8.	McFarland, M.B., et al., Perinatal outcome and the type and number of maneuvers in shoulder
745		<i>dystocia.</i> Int J Gynaecol Obstet, 1996. 55 (3): p. 219-24.
746	9.	Ouzounian, J.G. and R.B. Gherman, Shoulder dystocia: Are historic risk factors reliable
747		predictors? Am J Obstet Gynecol, 2005. 192 (6): p. 1933-5.
748	10.	Smith, R.B., C. Lane, and J.F. Pearson, Shoulder dystocia: what happens at the next delivery? Br
749		J Obstet Gynaecol, 1994. 101 (8): p. 713-5.
750	11.	Crofts, J.F., et al., Prevention of brachial plexus injury-12 years of shoulder dystocia training: an
751		interrupted time-series study. BJOG, 2016. 123(1): p. 111-8.
752	12.	Mollberg, M., et al., Increased incidence of shoulder dystocia but a declining incidence of
753		obstetric brachial plexus palsy in vaginally delivered infants. Acta Obstet Gynecol Scand, 2023.
754		102 (1): p. 76-81.
755	13.	Heinonen, K., et al., Pitfalls in the diagnostics of shoulder dystocia: an analysis based on the
756		scrutiny of 2274 deliveries. Arch Gynecol Obstet, 2023.
757	14.	Gherman, R.B., et al., The McRoberts' maneuver for the alleviation of shoulder dystocia: how
758	•	successful is it? Am J Obstet Gynecol, 1997. 176 (3): p. 656-61.
759	15.	Mazouni, C., et al., Maternal morbidity associated with obstetrical maneuvers in shoulder
760		dystocia. European Journal of Obstetrics & Gynecology and Reproductive Biology, 2006. 129(1):
761		p. 15-18.
762	16.	Mendez-Figueroa, H., et al., Shoulder Dystocia and Composite Adverse Outcomes for the
763		Maternal-Neonatal Dyad. Am J Obstet Gynecol MFM, 2021: p. 100359.
764	17.	Resolution, N., Early Notification Scheme - Year 1. 2019, NHS Resolution: London.
765	18.	Leung, T.Y., et al., Head-to-body delivery interval and risk of fetal acidosis and hypoxic
766		ischaemic encephalopathy in shoulder dystocia: a retrospective review. BJOG : an international
767		journal of obstetrics and gynaecology, 2011. 118 (4): p. 474-9.
768	19.	Acker, D.B., B.P. Sachs, and E.A. Friedman, Risk factors for shoulder dystocia. Obstet Gynecol,
769		1985. 66 (6): p. 762-8.

770	20.	Draycott, T.J., et al., Improving neonatal outcome through practical shoulder dystocia training.
771		Obstet Gynecol, 2008. 112 (1): p. 14-20.
772 773	21.	Gherman, R.B., et al., <i>Spontaneous vaginal delivery: a risk factor for Erb's palsy?</i> Am J Obstet Gynecol, 1998. 178 (3): p. 423-7.
774	22.	Chauhan, S.P., S.B. Blackwell, and C.V. Ananth, Neonatal brachial plexus palsy: incidence,
775		prevalence, and temporal trends. Semin Perinatol, 2014. 38 (4): p. 210-8.
776	23.	Yau, C.W.H., et al., Obstetric brachial plexus injuries (OBPIs): health-related quality of life in
777		affected adults and parents. Health Qual Life Outcomes, 2018. 16(1): p. 212.
778	24.	Resolution, N., Annual report and accounts 2020/21. 2021, NHS Resolution: HMSO, London. p.
779		1-168.
780	25.	Draycott, T., et al., Causation of permanent brachial plexus injuries to the anterior arm after
781		shoulder dystocia – literature review Clinical Risk, 2018.
782	26.	Gonik, B., N. Zhang, and M.J. Grimm, <i>Defining forces that are associated with shoulder dystocia:</i>
783		the use of a mathematic dynamic computer model. Am J Obstet Gynecol, 2003. 188 (4): p. 1068-
784		72.
785	27.	Allen, R., et al., Comparing mechanical fetal response during descent, crowning, and restitution
786		among deliveries with and without shoulder dystocia. Am J Obstet Gynecol, 2007. 196 (6): p.
787		539.e1-5.
788	28.	Allen, R.H., et al., Comparing clinician-applied loads for routine, difficult, and shoulder dystocia
789		deliveries. Am J Obstet Gynecol, 1994. 171 (6): p. 1621-7.
790	29.	Crofts, J.F., et al., Pattern and degree of forces applied during simulation of shoulder dystocia.
791		Am J Obstet Gynecol, 2007. 197 (2): p. 156 e1-6.
792	30.	Allen, R., J. Sorab, and B. Gonik, Risk factors for shoulder dystocia: an engineering study of
793		clinician-applied forces. Obstet Gynecol, 1991. 77(3): p. 352-5.
794	31.	Singh, A., et al., Biomechanical Responses of Neonatal Brachial Plexus to Mechanical Stretch. J
795		Brachial Plex Peripher Nerve Inj, 2018. 13(1): p. e8-e14.
796	32.	Weiner, C., L. Samuelson, and L. Collins, 61: 5-year experience with PROMP (PRactical Obstetric
797		Multidisciplinary Training) reveals sustained and progressive improvements in obstetric
798		outcomes Journal of Obstetrics and, 2014.
799	33.	Grunebaum, A., F. Chervenak, and D. Skupski, <i>Effect of a comprehensive obstetric patient safety</i>
800		program on compensation payments and sentinel events. Am J Obstet Gynecol, 2011. 204(2): p.
801		97-105.
802	34.	Ansell, L., et al., Axillary traction: An effective method of resolving shoulder dystocia. The
803		Australian & amp; New Zealand journal of obstetrics & amp; gynaecology, 2019. 38(1): p. 201-7.
804	35.	Dahlberg, J., et al., Ten years of simulation-based shoulder dystocia training- impact on
805		obstetric outcome, clinical management, staff confidence, and the pedagogical practice - a time
806		series study. BMC Pregnancy and Childbirth, 2018. 18(1): p. 1021-8.
807	36.	Kaljomaa, M., et al., Impact of simulation training on the management of shoulder dystocia and
808		incidence of permanent brachial plexus birth injury: An observational study. BJOG, 2022.
809	37.	López, R.S., et al., Incidencia de parálisis braquial obstétrica tras programa de entrenamiento
810		en distocia de hombros. Anales de Pediatría, 2022.
811	38.	Mollberg, M., et al., Obstetric brachial plexus palsy: a prospective study on risk factors related
812		to manual assistance during the second stage of labor. Acta Obstet Gynecol Scand, 2007. 86(2):
813		p. 198-204.
814	39.	Draycott, T., et al., A template for reviewing the strength of evidence for obstetric brachial
815		plexus injury in clinical negligence claims Clinical Risk, 2008. 14 (3): p. 96-100.
816	40.	Maternal and Child Health Research Consortium, Confidential Enquiry into Stillbirths and
817		Deaths in Infancy: 5th Annual Report. 1996: London.
818	41.	Draycott, T., R. Fox, and J. Crofts, Management of Shoulder Dystocia, in Greentop Guidelines,
819		RCOG, Editor. 2005, RCOG: London.

820	42.	Gynaecologists., R.C.o.O.a., Searching for Evidence. Clinical Governance Advice No. 3. 2001,
821		RCOG: London.
822	43.	Nesbitt, T.S., W.M. Gilbert, and B. Herrchen, Shoulder dystocia and associated risk factors with
823		macrosomic infants born in California. Am J Obstet Gynecol, 1998. 179 (2): p. 476-80.
824	44.	Bahar, A.M., Risk factors and fetal outcome in cases of shoulder dystocia compared with normal
825		deliveries of a similar birthweight. Br J Obstet Gynaecol, 1996. 103 (9): p. 868-72.
826	45.	Gross, T.L., et al., <i>Shoulder dystocia: a fetal-physician risk</i> . Am J Obstet Gynecol, 1987. 156 (6):
827		p. 1408-18.
828	46.	Naef, R.W., 3rd and J.N. Martin, Jr., <i>Emergent management of shoulder dystocia</i> . Obstet
829	47	Gynecol Clin North Am, 1995. 22 (2): p. 247-59.
830	47.	Athukorala, C., et al., Women with gestational diabetes mellitus in the ACHOIS trial: risk factors
831	40	for shoulder dystocia. Aust N Z J Obstet Gynaecol, 2007. 47 (1): p. 37-41.
832	48.	Dyachenko, A., et al., <i>Prediction of risk for shoulder dystocia with neonatal injury</i> . Am J Obstet
833	40	Gynecol, 2006. 195 (6): p. 1544-9.
834	49.	Rouse, D.J. and J. Owen, <i>Prophylactic cesarean delivery for fetal macrosomia diagnosed by</i>
835	50	means of ultrasonographyA Faustian bargain? Am J Obstet Gynecol, 1999. 181 (2): p. 332-8.
836	50.	Gupta, M., et al., Antenatal and intrapartum prediction of shoulder dystocia. European journal
837	F 1	of obstetrics, gynecology, and reproductive biology, 2010. 151 (2): p. 134-9.
838	51.	Nicolaides, K.H., et al., <i>Fetal Medicine Foundation fetal and neonatal population weight charts.</i>
839 840	52.	Ultrasound Obstet Gynecol, 2018. 52 (1): p. 44-51.
840 841	52.	RCOG, Birth After Previous Caesarean Birth, in Green Top Guidelines RCOG, Editor. 2015, RCOG: London.
842	53.	Wang, D., et al., <i>Risk factors and outcomes of macrosomia in China: a multicentric survey based</i>
843	55.	on birth data. J Matern Fetal Neonatal Med, 2017. 30 (5): p. 623-627.
844 844	54.	Beta, J., et al., Maternal and neonatal complications of fetal macrosomia: cohort study.
845	54.	Ultrasound Obstet Gynecol, 2019. 54(3): p. 319-325.
846	55.	Beta, J., et al., Maternal and neonatal complications of fetal macrosomia: systematic review
847	55.	and meta-analysis. Ultrasound Obstet Gynecol, 2019. 54(3): p. 308-318.
848	56.	Cheng, Y.K., et al., Use of birth weight threshold for macrosomia to identify fetuses at risk of
849	50.	shoulder dystocia among Chinese populations. Int J Gynaecol Obstet, 2013. 120 (3): p. 249-53.
850	57.	Overland, E.A., L.J. Vatten, and A. Eskild, <i>Risk of shoulder dystocia: associations with parity and</i>
851	071	offspring birthweight. A population study of 1 914 544 deliveries. Acta Obstet Gynecol Scand,
852		2012. 91 (4): p. 483-8.
853	58.	Van der Looven, R., et al., Risk factors for neonatal brachial plexus palsy: a systematic review
854		and meta-analysis. Dev Med Child Neurol, 2020. 62 (6): p. 673-683.
855	59.	Pondaag, W., R.H. Allen, and M.J. Malessy, Correlating birthweight with neurological severity of
856		obstetric brachial plexus lesions. BJOG, 2011. 118 (9): p. 1098-103.
857	60.	Iffy, L., et al., The risk of shoulder dystocia related permanent fetal injury in relation to birth
858		weight. Eur J Obstet Gynecol Reprod Biol, 2008. 136 (1): p. 53-60.
859	61.	Gillean, J.R., et al., <i>Big infants in the neonatal intensive care unit</i> . Am J Obstet Gynecol, 2005.
860		192 (6): p. 1948-53; discussion 1953-5.
861	62.	NICE, Antenatal care: routine care for thehealthy pregnant woman, in NICE Clinical Guidelines,
862		N.C.C.f.W.s.a.C.s. Health, Editor. 2008, National Institute for Health and Clinical Excellence:
863		London.
864	63.	England, N. Saving Babies' Lives Care Bundle 2024 [cited 2024 June]; Available from:
865		https://www.england.nhs.uk/mat-transformation/saving-babies/.
866	64.	Sparks, T.N., et al., Fundal height: a useful screening tool for fetal growth? J Matern Fetal
867		Neonatal Med, 2011. 24 (5): p. 708-12.
868	65.	Boulvain, M. and J.G. Thornton, Induction of labour at or near term for suspected fetal
869		macrosomia. Cochrane Database Syst Rev, 2023. 3(3): p. CD000938.

870	66.	Crofts, J., R. Fox, and T. Draycott, Shoulder Dystocia, in Greentop Guidelines, RCOG, Editor.
871		2012, RCOG: London. p. 1-18.
872	67.	ACOG, Clinical Management Guidelines for Obstetricians & Gynaecologists: Shoulder Dystocia.
873		ACOG Practice Bulletins, 2002. 40(2): p. 593 - 597.
874	68.	Chauhan, S.P., et al., Shoulder dystocia: comparison of the ACOG practice bulletin with another
875		national guideline. Am J Perinatol, 2010. 27 (2): p. 129-36.
876	69.	Boulvain, M., et al., Induction of labour at or near term for suspected fetal macrosomia.
877		Cochrane Database Syst Rev, 2016. 2016(5): p. CD000938.
878	70.	Ewington, L.J., et al., Induction of labour for predicted macrosomia: study protocol for the 'Big
879		Baby' randomised controlled trial. BMJ Open, 2022. 12 (11): p. e058176.
880	71.	NICE, CG 70 - Induction of Labour. 2008, National Collaborating Centre for Women's and
881		Children's Health: London.
882	72.	Magro-Malosso, E.R., et al., Induction of labour for suspected macrosomia at term in non-
883		diabetic women: a systematic review and meta-analysis of randomized controlled trials. BJOG,
884		2017. 124 (3): p. 414-421.
885	73.	NICE, Inducing Labour - NG 207, in NICE Guidelines, NICE, Editor. 2021, NICE: London. p. 1-36.
886	74.	Chan, S.W., et al., Montgomery and informed consent: where are we now? BMJ, 2017. 357: p.
887		j2224.
888	75.	RCOG, Choosing to have a caesarean section 2015, RCOG: London. p. 1-6.
889	76.	Mehta, S.H., et al., Shoulder dystocia and the next delivery: outcomes and management. J
890		Matern Fetal Neonatal Med, 2007. 20 (10): p. 729-33.
891	77.	Usta, I.M., et al., Shoulder dystocia: What is the risk of recurrence? Acta Obstet Gynecol Scand,
892		2008: p. 1-6.
893	78.	Lewis, D.F., et al., <i>Recurrence rate of shoulder dystocia</i> . Am J Obstet Gynecol, 1995. 172 (5): p.
894		1369-71.
895	79.	Ginsberg, N.A. and C. Moisidis, How to predict recurrent shoulder dystocia. Am J Obstet
896		Gynecol, 2001. 184 (7): p. 1427-9; discussion 1429-30.
897	80.	Lewis, D.F., et al., Can shoulder dystocia be predicted? Preconceptive and prenatal factors. J
898		Reprod Med, 1998. 43 (8): p. 654-8.
899	81.	Poggi, S.H., et al., Randomized trial of McRoberts versus lithotomy positioning to decrease the
900	~~	force that is applied to the fetus during delivery. Am J Obstet Gynecol, 2004. 191 (3): p. 874-8.
901	82.	Habek, D., Fatal neonatal spinal cord injury during shoulder dystocia. Childs Nerv Syst, 2022.
902	~~	38 (1): p. 5-6.
903	83.	Vojtisek, T., et al., <i>Traumatic Decapitation of the Fetus During Birth: Criminalistic and Forensic</i>
904	~ .	<i>Aspects.</i> Am J Forensic Med Pathol, 2020. 41 (3): p. 234-237.
905	84.	Metaizeau, J.P., C. Gayet, and F. Plenat, [Brachial plexus birth injuries. An experimental study
906	05	(author's transl)]. Chir Pediatr, 1979. 20 (3): p. 159-63.
907	85.	Metaizeau, J.P., Gayet, C., Plenat, F., [Brachial plexus birth injuries. An experimental study
908	0.0	(author's transl)]. Chir Pediatr, 1979. 20 (3): p. 159-63.
909	86.	Johansen, L.T., et al., How common is substandard obstetric care in adverse events of birth
910		asphyxia, shoulder dystocia and postpartum hemorrhage? Findings from an external inspection
911	07	of Norwegian maternity units. Acta Obstet Gynecol Scand, 2021. 100(1): p. 139-146.
912	87.	Hope, P., et al., Fatal shoulder dystocia: a review of 56 cases reported to the Confidential
913	00	Enquiry into Stillbirths and Deaths in Infancy. Br J Obstet Gynaecol, 1998. 105 (12): p. 1256-61.
914	88.	Grobman, W., et al., <i>Outcomes associated with introduction of a shoulder dystocia protocol.</i>
915	00	American Journal of Obstetrics and Gynecology, 2011. Epub ahead of Print .
916	89.	Siassakos, D., et al., <i>Clinical efficiency in a simulated emergency and relationship to team</i>
917		behaviours: a multisite cross-sectional study. BJOG : an international journal of obstetrics and
918 919	00	gynaecology, 2011. 118 (5): p. 596-607.
919	90.	Gonik, B., C.A. Stringer, and B. Held, <i>An alternate maneuver for management of shoulder dystocia</i> . Am J Obstet Gynecol, 1983. 145 (7): p. 882-4.
520		<i>uystociu.</i> Am j Obstet Gynecol, 1303. 143 (7). p. 882-4.

921	91.	Buhimschi, C.S., et al., Use of McRoberts' position during delivery and increase in pushing
922		<i>efficiency.</i> Lancet, 2001. 358 (9280): p. 470-1.
923	92.	Lurie, S., A. Ben-Arie, and Z. Hagay, The ABC of shoulder dystocia management. Asia Oceania J
924		Obstet Gynaecol, 1994. 20 (2): p. 195-7.
925	93.	O'Leary, J.A. and H.B. Leonetti, Shoulder dystocia: prevention and treatment. Am J Obstet
926		Gynecol, 1990. 162 (1): p. 5-9.
927	94.	Leung, T., et al., Comparison of perinatal outcomes of shoulder dystocia alleviated by different
928		type and sequence of manoeuvres: a retrospective review. BJOG : an international journal of
929		obstetrics and gynaecology, 2011.
930	95.	Lau, S.L., et al., A critical evaluation of the external and internal maneuvers for resolution of
931		shoulder dystocia. Am J Obstet Gynecol, 2023.
932	96.	Leung, T.Y., et al., Comparison of perinatal outcomes of shoulder dystocia alleviated by different
933		type and sequence of manoeuvres: a retrospective review. BJOG, 2011. 118 (8): p. 985-90.
934	97.	Gurewitsch, E.D., et al., Episiotomy versus fetal manipulation in managing severe shoulder
935		dystocia: a comparison of outcomes. Am J Obstet Gynecol, 2004. 191(3): p. 911-6.
936	98.	Hinshaw, K., Shoulder Dystocia, in Managing Obstetric Emergencies and Trauma - The MOET
937		Course Manual, R. Johanson, et al., Editors. 2003, RCOG: London. p. 165 - 174.
938	99.	Crofts, J.F., et al., Observations from 450 shoulder dystocia simulations: lessons for skills
939		<i>training</i> . Obstet Gynecol, 2008. 112 (4): p. 906-12.
940	100.	Barnum, C.G., Dystocia due to the shoulders. American Journal of Obstetrics and Gynecology,
941		1945. 50 : p. 439-42.
942	101.	Woods, C.E., Westbury, N.Y., A principle of physics as applicable to shoulder delivery. American
943		Journal of Obstetrics and Gynecology, 1943. 45 : p. 796-804.
944	102.	Rubin, A., Management of Shoulder Dystocia. Jama, 1964. 189 : p. 835-7.
945	103.	Hoffman, M.K., et al., A Comparison of Obstetric Maneuvers for the Acute Management of
946		Shoulder Dystocia. Obstetrics and gynecology, 2011. 117(6): p. 1272-1278.
947	104.	Poggi, S.H., C.Y. Spong, and R.H. Allen, Prioritizing posterior arm delivery during severe shoulder
948		dystocia. Obstet Gynecol, 2003. 101(5 Pt 2): p. 1068-72.
949	105.	Bruner, J.P., et al., All-fours maneuver for reducing shoulder dystocia during labor. J Reprod
950		Med, 1998. 43 (5): p. 439-43.
951	106.	Sandberg, E.C., The Zavanelli maneuver: a potentially revolutionary method for the resolution of
952		shoulder dystocia. Am J Obstet Gynecol, 1985. 152(4): p. 479-84.
953	107.	Vaithilingam, N. and D. Davies, Cephalic replacement for shoulder dystocia: three cases. Bjog,
954		2005. 112 (5): p. 674-5.
955	108.	Spellacy, W.N., The Zavanelli maneuver for fetal shoulder dystocia. Three cases with poor
956		<i>outcomes.</i> J Reprod Med, 1995. 40 (7): p. 543-4.
957	109.	Gherman, R.B., J.G. Ouzounian, and S. Chauhan, Posterior arm shoulder dystocia alleviated by
958		the Zavanelli maneuver. American journal of perinatology, 2010. 27(9): p. 749-51.
959	110.	van Roosmalen, J., Shoulder dystocia and symphysiotomy. Eur J Obstet Gynecol Reprod Biol,
960		1995. 59 (1): p. 115-6.
961	111.	Hartfield, V.J., Symphysiotomy for shoulder dystocia. Am J Obstet Gynecol, 1986. 155(1): p. 228.
962	112.	Wykes, C.B., et al., Symphysiotomy: a lifesaving procedure. BJOG, 2003. 110(2): p. 219-21.
963	113.	Goodwin, T.M., et al., Catastrophic shoulder dystocia and emergency symphysiotomy. Am J
964		Obstet Gynecol, 1997. 177 (2): p. 463-4.
965	114.	Gei, A.F., et al., The Carit Maneuver: A Novel Approach for the Relief of Shoulder Dystocia-A
966		<i>Case Series.</i> AJP Rep, 2020. 10 (2): p. e133-e138.
967	115.	Sancetta, R., H. Khanzada, and R. Leante, Shoulder Shrug Maneuver to Facilitate Delivery During
968		Shoulder Dystocia. Obstet Gynecol, 2019. 133(6): p. 1178-1181.
969	116.	Habek, D., Severe refractory bilateral shoulder dystocia released with digital hooking
970		(Bourgeois-Siegemundin) manoeuvre. J Obstet Gynaecol, 2019. 39 (4): p. 581.

971	117.	Taddei, E., et al., Posterior axilla sling traction and rotation: A case report of an alternative for
972		intractable shoulder dystocia. J Obstet Gynaecol, 2017. 37(3): p. 387-389.
973	118.	Cluver, C.A. and G.J. Hofmeyr, Posterior axilla sling traction for shoulder dystocia: case review
974		and a new method of shoulder rotation with the sling. Am J Obstet Gynecol, 2015. 212 (6): p.
975		784 e1-7.
976	119.	Ansell, L., et al., Axillary traction: An effective method of resolving shoulder dystocia. Aust N Z J
977		Obstet Gynaecol, 2019. 59 (5): p. 627-633.
978	120.	Kwan, A.H.W., et al., Intrauterine fetal death followed by shoulder dystocia and birth by
979		modified posterior axillary sling method: a case report. BMC Pregnancy Childbirth, 2021. 21(1):
980		p. 672.
981	121.	McCarter, A.R., R.N. Theiler, and E.Y. Rivera-Chiauzzi, Circumferential shoulder laceration after
982		posterior axilla sling traction: a case report of severe shoulder dystocia. BMC Pregnancy
983		Childbirth, 2021. 21 (1): p. 45.
984	122.	Rowe, R., et al., Neonatal admission and mortality in babies born in UK alongside midwifery
985		units: a national population-based case-control study using the UK Midwifery Study System
986	400	(UKMidSS). Arch Dis Child Fetal Neonatal Ed, 2021. 106 (2): p. 194-203.
987	123.	Heath, T. and R.B. Gherman, Symphyseal separation, sacroiliac joint dislocation and transient
988		lateral femoral cutaneous neuropathy associated with McRoberts' maneuver. A case report. J
989	174	Reprod Med, 1999. 44 (10): p. 902-4.
990 991	124.	Battin, M.R., et al., <i>Shoulder dystocia, umbilical cord blood gases and neonatal encephalopathy.</i> Aust N Z J Obstet Gynaecol, 2021.
991	125.	Aust N 2 J Obstet Gynaecol, 2021. Ancora, G., et al., Intrapartum Asphyxiated Newborns Without Fetal Heart Rate and Cord Blood
993	125.	Gases Abnormalities: Two Case Reports of Shoulder Dystocia to Reflect Upon. Front Pediatr,
994		2020. 8 : p. 570332.
995	126.	Menticoglou, S. and C. Schneider, <i>Resuscitating the Baby after Shoulder Dystocia</i> . Case Rep
996	120.	Obstet Gynecol, 2016. 2016 : p. 8674167.
997	127.	Mercer, J., D. Erickson-Owens, and R. Skovgaard, <i>Cardiac asystole at birth: Is hypovolemic shock</i>
998		<i>the cause?</i> Med Hypotheses, 2009. 72 (4): p. 458-63.
999	128.	Spain, J.E., et al., Neonatal morbidity associated with shoulder dystocia maneuvers. Am J Obstet
1000		Gynecol, 2015. 212 (3): p. 353 e1-5.
1001	129.	Royal College of Obstetricians and Gynaecologists / Royal College of Midwives Joint Working
1002		Party Report, Towards Safer Childbirth: Minimum Standards for the Organisation of Labour
1003		Wards. 1999, RCOG Press: London.
1004	130.	Crofts, J.F., et al., Management of Shoulder Dystocia: Skill Retention 6 and 12 Months After
1005		Training
1006	10.109	97/01.AOG.0000286779.41037.38. Obstet Gynecol, 2007. 110 (5): p. 1069-1074.
1007	131.	Draycott, T., Not all training for obstetric emergencies is equal, or effective. Bjog, 2017. 124 (4):
1008		p. 651.
1009	132.	Wagner, S.M., et al., Interventions to decrease complications after shoulder dystocia: a
1010		systematic review and Bayesian meta-analysis. Am J Obstet Gynecol, 2021.
1011	133.	MacKenzie, I.Z., et al., Management of Shoulder Dystocia: Trends in Incidence and Maternal
1012		and Neonatal Morbidity Obstet Gynecol, 2007. 110 (5): p. 1059-1068.
1013	134.	Johnson, G.J., et al., Pathophysiologic Origins of Brachial Plexus Injury. Obstet Gynecol, 2020.
1014		136 (4): p. 725-730.
1015	135.	Weiner, C.P., et al., Multi-professional training for obstetric emergencies in a US hospital over a
1016	400	7-year interval: an observational study. J Perinatol, 2016. 36 (1): p. 19-24.
1017	136.	Gurewitsch Allen, E.D., et al., Improving Shoulder Dystocia Management and Outcomes with a
1018	107	Targeted Quality Assurance Program. Am J Perinatol, 2017. 34 (11): p. 1088-1096.
1019	137.	Crofts, J., et al., Change in knowledge of midwives and obstetricians following obstetric
1020		emergency training: a randomised controlled trial of local hospital, simulation centre and

1021		teamwork training. BJOG: An International Journal of Obstetrics and Gynaecology, 2007.
1022	100	114 (12): p. 1534-1541.
1023	138.	Sorensen, J.L., et al., <i>The implementation and evaluation of a mandatory multi-professional</i>
1024		obstetric skills training program. Acta obstetricia et gynecologica Scandinavica, 2009. 88 (10): p.
1025 1026	120	1107-17. Goffman, D., et al., Improving shoulder dystocia management among resident and attending
1028	139.	physicians using simulations. American Journal of Obstetrics and Gynecology, 2008. 199 (3): p.
1027		294.e1-294.e5.
1028	140.	Crofts, J.F., et al., Training for shoulder dystocia: a trial of simulation using low-fidelity and
1029	140.	high-fidelity mannequins. Obstet Gynecol, 2006. 108 (6): p. 1477-85.
1030	141.	Crofts, J.F., et al., Shoulder dystocia training using a new birth training mannequin. BJOG, 2005.
1031	141.	112 (7): p. 997-9.
1032	142.	Deering, S., et al., Improving resident competency in the management of shoulder dystocia with
1035	142.	simulation training. Obstet Gynecol, 2004. 103 (6): p. 1224-8.
1034	143.	Crofts, J.F., et al., Patient-actor perception of care: a comparison of obstetric emergency
1035	145.	training using manikins and patient-actors. Qual Saf Health Care, 2008. 17 (1): p. 20-4.
1030	144.	Inglis, S.R., et al., Effects of shoulder dystocia training on the incidence of brachial plexus injury.
1037	144.	American Journal of Obstetrics and Gynecology, 2011. 204 (4): p. 322 e1-6.
1038	145.	López, R.S., et al., Incidence of obstetric brachial plexus palsy after a training program in
1039	145.	shoulder dystocia. Anales de Pediatría (English Edition), 2022. 97 (6): p. 415-421.
1040	146.	Yau, C.W.H., et al., A model-based cost-utility analysis of multi-professional simulation training
1041	140.	in obstetric emergencies. PLoS One, 2021. 16 (3): p. e0249031.
1042	147.	Deering, S.H., L. Weeks, and T. Benedetti, <i>Evaluation of force applied during deliveries</i>
1043	147.	complicated by shoulder dystocia using simulation. American Journal of Obstetrics and
1044		Gynecology, 2011. 204 (3): p. 234 e1-5.
1045	148.	Kelly, J., et al., 211: Determining the value of force-feedback simulation training for shoulder
1040	140.	dystocia. American Journal of Obstetrics and, 2008.
1047	149.	Vanderhoeven, J., et al., 201: Evaluating in-situ simulation and team training on response to
1049	145.	shoulder dystocia. American Journal of, 2008.
1050	150.	Maternal and Child Health Research Consortium, Confidential Enguiry into Stillbirths and
1051	150.	Deaths in Infancy: 6th Annual Report. 1997: London.
1051	151.	Deering, S., et al., Evaluation of residents' delivery notes after a simulated shoulder dystocia.
1053	191.	Obstet Gynecol, 2004. 104 (4): p. 667-70.
1054	152.	Authority, N.L., Summary of substandard care in cases of Brachial Plexus Injury. NHSLA Journal,
1055	152.	2003(2): p. ix-xi.
1056	153.	Acker, D.B., A shoulder dystocia intervention form. Obstet Gynecol, 1991. 78 (1): p. 150-1.
1057	154.	Crofts, J.F., et al., Documentation of simulated shoulder dystocia: accurate and complete?
1058		BJOG, 2008. 115 (10): p. 1303-8.
1059	155.	Midwives., R.C.o., <i>Clinical risk management Paper 2: Shoulder dystocia</i> . 2002, RCM: London.
1060		
2000		
		T

1061 Appendix 1: Explanation of grades and evidence levels

1062

1063 Classification of evidence levels

- 1++ High-quality meta-analyses, systematic reviews of randomised controlled trials or randomised controlled trials with a very low risk of bias
- 1+ Well-conducted meta-analyses, systematic reviews of randomised controlled trials or randomised controlled trials with a low risk of bias
- 1– Meta-analyses, systematic reviews of randomised controlled trials or randomised controlled trials with a high risk of bias
- 2++ High-quality systematic reviews of case-control or cohort studies or high-quality case-control or cohort studies with a very low risk of confounding, bias or chance and a high probability that the relationship is causal
 24- Woll constructed case control or cohort studies with a low risk of confounding.
- 2+ Well-conducted case–control or cohort studies with a low risk of confounding, bias or chance and a moderate probability that the relationship is causal
- 2- Case-control or cohort studies with a high risk of confounding, bias or chance and a significant risk that the relationship is not causal
 - Non-analytical studies, e.g. case reports, case series

4 Expert opinion

1064

Grades of Recommendation

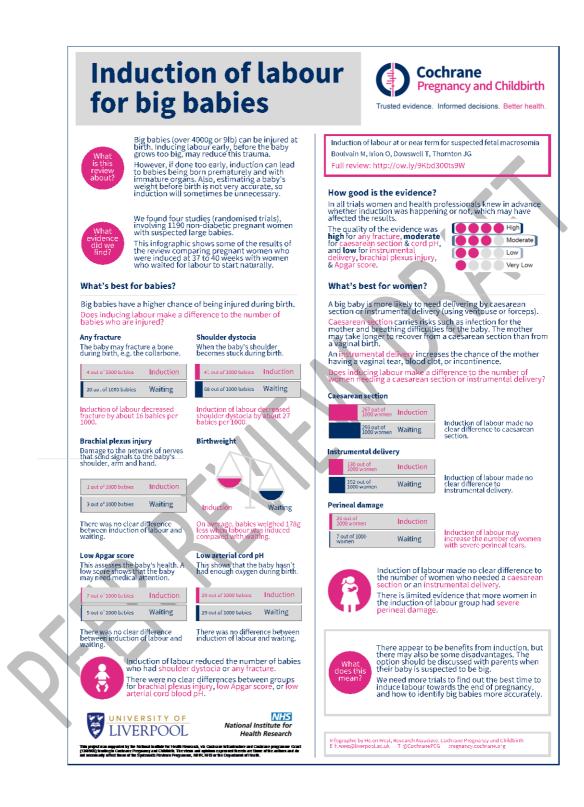
A At least one meta-analysis, systematic reviews or RCT rated as 1++, and directly applicable to the target population; or a systematic review of RCTs or a body of evidence consisting principally of studies rated as 1+, directly applicable to the target population and demonstrating overall consistency of results

3

A body of evidence including studies rated as 2++ directly applicable to the target population, and demonstrating overall consistency of results; or

- Extrapolated evidence from studies rated as 1++ or 1+
- C A body of evidence including studies rated as 2+ directly applicable to the target population, and demonstrating overall consistency of results; or Extrapolated evidence from studies rated as 2++
 - Extrapolated evidence from studies rated a
- D Evidence level 3 or 4; or
 - Extrapolated evidence from studies rated as 2+

Good Practice Points (GPP)


Recommended best practice based on the clinical experience of the guideline development group.*

1065

*on the occasion when the guideline development group find there is an important practical point that they wish to emphasise but for which there is not, nor is there likely to be any research evidence. This will typically be where some aspect of treatment is regarded as such sound clinical practice that nobody is likely to question it. These are marked in the guideline, and are indicated by \checkmark or GPP. It must be emphasised that these are NOT an alternative to evidence-based recommendations, and should only be used where there is no alternative means of highlighting the issue.

Appendix 2: Cochrane infographics for induction of labour for big babies

1073 1074

1078 Appendix 3: management algorithm

1079

McROBERTS' MANOEUVRE: thighs to abdomen

Consider 'All fours - McRoberts' if **lone** birth attendant (with routine **axial** traction to see if manoeuvre has worked)

SUPRAPUBIC PRESSURE

(and routine axial traction to see if manoeuvre has worked)

Try either internal manoeuvre first depending on clinical circumstances and operator experience

DELIVERY OF BABY'S POSTERIOR ARM (and routine axial traction to see manoeuvre has worked) INTERNAL MOVEMENT OF BABY'S SHOULDERS INTO WIDER OBLIQUE DIAMETER OF MOTHER'S PELVIS (and routine axial traction to see if manoeuvre has worked) If a manoeuvre is unsuccessful move straight on to the next step

If above manoeuvres fail to release impacted shoulders, consider ALL-FOURS POSITION AND/OR DIGITAL AXILLARY TRACTION OF THE POSTERIOR ARM (if appropriate)

OR Go back to start and repeat all the above actions again

Alert the neonatologist to potential risk of hypovolaemia if infant is slow to respond to initial resuscitation

Baby to be reviewed by neonatologist after birth and referred for consultant neonatal review if any concerns

DOCUMENT ALL ACTIONS ON PRO FORMA AND COMPLETE CLINICAL INCIDENT REPORT

1080 1081

1082

1002

1083

1084

1085

1086

1087

1089Appendix 4. Maneouvres1090Observing visual representation of the maneouvres is best observed in three-dimensons.1091Below is a training to demonstrate common maneouvres for shoulder dystocia.1092https://www.youtube.com/watch?v=UTz2eliZOL8

Appendix 5: Documentation proforma

1098

		SHOUL	DER	OYSTOCIA	DOCU	MENTA	TION		
Date Time Person completing form Designation Signature						Mother's Name Date of birth Hospital Number Consultant			
Called for he	elp at:		E	Emergency call via switchboard at:					
Staff present	t at delivery	of head:	A	dditional	staff att	ending	for delivery of s	houlders	
Nar	ne	Role	_	Name			Role	Time arrived	
Procedures assist delive	ry	By whom		Time Order			Details	Reason if not performed	
McRoberts' p	osition	-							
Suprapubic p	ressure					From maternal left / right (circle as appropriate)		t	
Episiotomy						Enough access / tear present /already performed (circle as appropriate)			
Delivery of po						Right / left arm cle as appropriate)			
Internal rotati manoeuvre	ona				20				
Description o	f rotation								
Description o	Routine axial (as in normal Other - vaginal delivery)				Reason if not routine axial:				
Other manoed									
Mode of deliv	erv of head		Spon	taneous		1	Instrumental – v	acuum / forceps	
Time of delive		Time of delivery o			of baby	\vdash	Head-to-body		
Fetal position dystocia	Head facing maternal left				delivery interval Head facing maternal right Right fetal shoulder anterior				
Birth weight				5 mir	¥	10 mins :			
Cord gases		Art pH :		Art BE:		Veno	us pH :	Venous BE :	
Explanation to	Yes		Ву		AIMS form completed		Yes		
Neonatologist called? Yes Neonatologist arrived: Name: If neonatologist not called or didn't arrive, give reason:									
Baby assessment after birth (maybe Any sign of arm weakness? Any sign of potential bony fracture? Baby admitted to Neonatal Intensive C Assessment by				e by M/W): Jnit?	Yes Yes Yes	No No No	If yes to any o	f these questions for low up by Consultant	

Please copy x 2 copies: x1 maternal notes, x 1 attached to AIMS form.

1108	This guideline was produced on behalf of the Royal College of Obstetricians and Gynaecologists by: Dr
1109	K Lattey, Bristol; Mrs C Winter FRCOG, Bristol; Dr VA Ellis, Somerset; Dr JF Crofts MRCOG, Bristol; Mr
1110	T Quick, London; Miss G Bourke FRCSI FRCS, Leeds; Professor TY Leung FROCG, Hong Kong; and
1111	Professor T Draycott FRCOG, Bristol.
1112	
1113	and peer reviewed by: XXX
1114	
1115	Committee lead reviewers were: Dr P Wu MRCOG, Keele and Dr R Bahl MRCOG, Bristol.
1116	
1117	The chair of the Guidelines Committee were: Ms N Potdar FRCOG, Leicester; ¹ Mr A McKelvey MRCOG,
1118	Norwich; ¹ Ms L Knight MRCOG, Devon ² and Dr A Campbell FRCOG Edinburgh. ²
1119	¹ until May 2024; ² from June 2024.
1120 1121	The final version is the responsibility of the Guidelines Committee of the PCOC
	The final version is the responsibility of the Guidelines Committee of the RCOG.
1122	
1123	The guideline will be considered for update 3 years after publication, with an intermediate assessment
1124 1125	of the need to update 2 years after publication.
1125	
1127 1128	DISCLAIMER
1128	The Royal College of Obstetricians and Gynaecologists produces guidelines as an educational aid to
1129	good clinical practice. They present recognised methods and techniques of clinical practice, based on
1131	published evidence, for consideration by obstetricians and gynaecologists and other relevant health
1132	professionals. The ultimate judgement regarding a particular clinical procedure or treatment plan must
1133	be made by the doctor or other attendant in the light of clinical data presented by the patient and the
1134	diagnostic and treatment options available.
1135	
1136	This means that RCOG Guidelines are unlike protocols or guidelines issued by employers, as they are
1137	not intended to be prescriptive directions defining a single course of management. Departure from the
1138	local prescriptive protocols or guidelines should be fully documented in the patient's case notes at the
1139	time the relevant decision is taken.

