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Plain language summary 5 

Artificial Intelligence (AI) is an emerging powerful technology that differs from traditional computer 6 

programs in its ability to learn from its results and enhance performance, mimicking human 7 

intelligence; hence the name. AI is already an important part of most computer-based tasks in our 8 

daily lives. Everyday examples include internet search engines, and products that provide face 9 

recognition or predict the outbreak of diseases. 10 

Research interests in AI appear to be subjected to available preexisting information and datasets 11 

rather than addressing patients’ priorities and clinical needs. The National Institute for Health and 12 

Care Excellence (NICE) in England noted that current medical technologies using AI lack robust 13 

research backing and NHS patient involvement. 14 

While some AI-based products are currently in clinical use – for example, in identifying abnormal cells 15 

in cervical smears -  AI remains largely in the research phase in gynaecology oncology. Researchers 16 

have reported good results of its performance in fields such as prediction of lymph node involvement 17 

in cervical, endometrial, and ovarian cancers, which are important for treatment planning, 18 

distinguishing benign from malignant pelvic masses, and cervical cancer screening in low and high-19 

income countries. 20 

There are ethical concerns surrounding the use of AI in health care. Many of these concerns relate to 21 

the quality of data used in training AI systems, i.e data should be inclusive so that results can be 22 

applicable in the future irrespective of race, ethnicity, socio-economic background or place of 23 

residence. It is also not clear who should take responsibility for clinical recommendation made by AI 24 

systems: is it the doctor using it, the hospital employing the doctor, or the creators of the AI product. 25 

Concerns have also been raised regarding how the roll out of AI might affect jobs for doctors, nurses 26 

and administrator staff and their families. 27 

AI is expected to contribute to health care in many positive ways. This can be achieved with good 28 

scrutiny and appropriate legislations to protect patients’ health and privacy in addition to identifying 29 

important research and implementation areas through a collaborative partnership among investors, 30 

investigators, clinicians, and patients. 31 

This guidance is for healthcare professionals who care for women, non-binary and trans people. 32 

Within this document we use the terms woman and women’s health. However, it is important to 33 

acknowledge that it is not only women for whom it is necessary to access women’s health and 34 

reproductive services in order to maintain their gynaecological health and reproductive wellbeing. 35 
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Gynaecological and obstetric services and delivery of care must therefore be appropriate, inclusive 36 

and sensitive to the needs of those individuals whose gender identity does not align with the sex 37 

recorded at birth. 38 

1 Introduction 39 

The term artificial intelligence (AI) is believed to have been coined by John McCarthy et al at the 40 
Dartmouth Summer Research Project in 1956, when it was proposed that a machine can be made to 41 
simulate ‘every aspect of learning or any other features of intelligence.1 AI is a rapidly evolving field 42 
with expanding potentials that is increasingly becoming an integral part our daily lives. Every day 43 
examples include internet search engines, recommended posts on social media, financial sector 44 
forecast, disease outbreak modelling, defence and weaponry, and even the editing of medical 45 
articles.2-4 46 

While there is no a universally agreed definition, AI can refer to a branch of informatics that engineer 47 
computer systems capable of performing tasks that typically require human intelligence such as 48 
reasoning, adaptation, and learning via feedback processes.5,6 The National Institute for Health and 49 
Care Excellence (NICE) has noted that the exact definition of AI in healthcare could be context-50 
dependent and that the extent of AI incorporation into digital health technologies could vary widely7,8.  51 

In AI, computer systems are built using algorithms, which are sets of mathematical instructions 52 
constructed by coding engineers, to uncover patterns and relationships among variables by mining 53 
and mapping data and then selecting the best model for a specified purpose.6,9,10 Algorithms in AI are 54 
designed so they can learn and, hence, refine their own performance, unlike conventional algorithms 55 
used in traditional computing, which are engineered to follow predefined strict instructions and rules 56 
with no inherent capability for learning or performance improvement.11 Generally, AI algorithms are 57 
trained on a dataset (called training data) then are tested to assess performance on another unseen 58 
dataset (testing data) prior to implementation on external or validation data. Typically, both training 59 
data and testing data are obtained from the same dataset, which is usually divided according to a 60 
specified ratio and allocation method.6  61 

1.1 Machine learning 62 

Machine learning (ML) is a subfield of AI that facilitates computer systems to enhance their 63 
performance in a given task without being programmed explicitly. Machine learning research aims to 64 
design algorithms-based models that can learn more efficiently from large and various datasets and 65 
examine their applications in multifarious domains.3,12 66 

Data used in ML can be labelled or unlabelled. Labelled data comprise input variables (predictor 67 
features) which are associated with known outcome values (target values or labels). On the other 68 
hand, unlabelled data contains only input variables with no stated outcome values. For example, a 69 
dataset for ovarian cancer patients with patients’ demographics and cancer characteristics (input 70 
variables) would be unlabelled data, unless the dataset also includes survival outcome (outcome 71 
value) where it would be labelled data.6 72 

There are two types of ML; supervised learning and unsupervised learning. Supervised ML involves 73 
training an ML model on labelled data, it aims to learn a function to predict the accurate target value. 74 
Supervised ML has succeeded considerably in tasks, such as image recognition, speech recognition, 75 
natural language processing and autonomous driving, that would be challenging or unattainable with 76 
traditional programming techniques. However, some of the challenges of supervised ML include the 77 
need for large amounts of labelled data which could be time and expertise consuming, and the 78 
difficulty of handling noisy or ambiguous labels.6,9,13 Unsupervised ML utilises unlabelled datasets for 79 
training to uncover interactions and relationships within the data to identify patterns underlying the 80 
data structure. Clustering, dimensionality reduction, and generative modelling are examples of 81 
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unsupervised ML. Unsupervised learning can be used to learn abstract and general data 82 
representations, and to map the data into compressed representations called embeddings, which 83 
retain most of the information of the original data. Autoencoders, generative adversarial networks, 84 
and self-organising maps are some of the primary methods for unsupervised learning.6,14 85 

1.2 Deep learning 86 

Deep learning (DL) is a subset of ML that uses multi-layered neural networks (NN) to generate complex 87 
data representations. DL models perform exceptionally well in domains with high-dimensional input 88 
data, such as images, videos, and texts. DL models can autonomously extract hierarchical features 89 
from input data and learn to classify, generate, or transform them by layering multiple levels of 90 
artificial neurons. DL research focuses on developing new architectures and optimisation techniques 91 
for NN and investigating their applications in computer vision, speech recognition, natural language 92 
processing, and robotics. Recent advances in DL, such as transformer models, generative adversarial 93 
networks (GANs) and diffusion models, have cultivated new ways of human-machine interaction 94 
leading to significant AI research breakthroughs.15-17 95 

1.3 AI in Cancer research 96 

In recent years, ML and DL have advanced healthcare research including cancer diagnosis, 97 
classification and prognosis. These technologies have provided researchers and clinicians with novel 98 
tools to further our understanding of the complex mechanisms involved in cancer development and 99 
to identify more effective targeted therapeutic options. ML algorithms, for example, can analyse 100 
extensive medical records, genetics, and other datasets to unveil patterns that human analysis finds 101 
difficult or impossible to recognise.  102 

1.3.1 AI in medical imaging 103 

One significant application of ML in cancer research is image analysis. DL algorithms can analyse 104 

medical images, such as X-rays, computerised tomography (CT) scans, and magnetic resonance (MR) 105 

images, to detect patterns and anomalies that may demonstrate the presence of cancer. This 106 

technology has shown promising results in improving the accuracy of cancer detection, which could 107 

lead to cancer diagnosis at early stages, with the opportunity for curative treatment and improved 108 

prognosis. DL models can also be employed to analyse medical images to track tumour growth and 109 

response to treatment over time.16 The use of a cloud-based DL system in one institution resulted in 110 

significant savings in clinicians’ time required for contouring volumes of interest (VOIs) of various 111 

organs even when taking into account the time required for correction. The median (range) time for 112 

manual VOIs delineation, DL-based segmentation, and subsequent manual corrections were 25.0 (8.0-113 

115.0), 2.3 (1.2-8) and 10.0 minutes (0.3-46.3), respectively in images from 111 patients with various 114 

cancer, including female pelvis.18  115 

1.3.2 AI in drug discovery 116 

Another area where ML is making significant advances in cancer research in drug discovery. Traditional 117 

drug discovery processes are expensive, time-consuming, and often unsuccessful. ML algorithms can 118 

scrutinise large datasets of chemical compounds and their interactions with biological systems to 119 

identify potential drug candidates. As a result, this technology can substantially expedite the drug 120 

discovery process, leading to more effective cancer treatments in a shorter time. Recently, FDA has 121 

issued an investigational new drug (IND) clearance for the first time for an AI-generated drug: 122 

ISM3091, a ubiquitin-specific protease 1 (USP1) inhibitor.19 123 

 124 
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2 AI: Supporting evidence in health care 125 

The contribution of AI in healthcare is widely celebrated on social and traditional media platforms. It 126 
is regarded as an example of good use and a positive role for AI in the face of growing concerns among 127 
AI experts regarding its governance in some other fields.20 While the number of published peer-128 
reviewed articles pertaining to AI in healthcare has increased exponentially in recent years21, there 129 
has been limited robust evidence supporting the implementation of AI or AI-based devices in 130 
healthcare.  131 

There are four Cochrane reviews addressing AI to date, all of which were in fields other than 132 
gynaecology.22 NICE has produced Medtech Innovation Briefings (MIB) to advise NHS and social care 133 
commissioners when considering new medical technologies. NICE has issued eight MIBs addressing AI 134 
systems for all of which there were limited prospective studies and/or a lack of involvement of NHS 135 
patients.23-30 It is worth noting that none of these MIBs were related to gynaecological cancers.  136 

On the other hand, the United States Food and Drug Administration (FDA) has approved or cleared 137 
692 AI-enabled medical devices: 547 (79%) devices were radiology based, while only one system was 138 
listed in the obstetrics and gynecology panel (KIDScore D3 for embryo selection).31-2 The Conformité 139 
Européene (CE) mark is not centralised, unlike FDA, and hence there is no readily accessible list of CE-140 
marked AI systems or AI-based devices. Muehlematter et al, have identified 240 AI/ML-based devices 141 
approved in Europe between 2015-20, of which only 124 were also approved by FDA. Furthermore, 142 
the authors concluded that the majority of CE-marked AI products were not supported by any peer-143 
reviewed publications.33 144 

Two systematic reviews have found no clinical trials investigating AI models in gynaecology oncology34-145 
5. In addition, there seems to be a paucity in literature of reports into the role of AI in cancers of vulva, 146 
vagina and gestational trophoblastic disease36-7. 147 

2.1 AI reporting standards 148 

Generally, there has been insufficient scrutiny of reporting standards in AI studies in terms of design, 149 
methodology, and outcomes.34,38 Pre-existing reporting guidelines were found to be limited and 150 
inadequate to assess AI reporting aricles.34 Hence, several reporting guidelines have been updated to 151 
accommodate specifics pertaining to AI studies. Generally these are referred to as AI extensions such 152 
as CONSORT-AI (Consolidated Standards of Reporting Trials-AI); SPIRIT-AI (Standard Protocol Items: 153 
Recommendations for Interventional Trials–AI); STARD-AI (Standards for Reporting of Diagnostic 154 
Accuracy Studies-AI; TRIPOD-AI (Transparent Reporting of a multivariable prediction model for 155 
Individual Prognosis Or Diagnosis-AI); PROBAST-AI (Prediction model Risk Of Bias ASsessment Tool - 156 
AI); QUADAS-AI (Quality Assessment of Diagnostic Accuracy Studies-AI); and DECIDE-AI 157 
(Developmental and Exploratory Clinical Investigations of DEcision-support systems driven by Artificial 158 
Intelligence). 21,34,38-49. 159 

Shahzad et al and Plana et al independently conducted systematic reviews looking into reporting 160 
standards in randomised controlled trails (RCT) investigating AI-based interventions until 2021; they 161 
found 42 and 41 RCTs respectively with poor adherence to CONSORT-AI guidelines.34,35 162 

2.2 AI and statistics 163 

AI has offered exciting new opportunities for exploring and mining big data and uncovering patterns 164 
and relationships, including when these are complex or non-linear.15,39,50-52 In this regard, AI 165 
complements traditional computing and inference statistics, offering evidence to inform medical 166 
practice and health care delivery.4 For instance, while supervised ML has provided a complementary 167 
approach to regression statistics and survival analysis; unsupervised ML, with the ability to identify 168 
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nonlinear relationships among variables, could be used as an alternative technique to correlation 169 
statistics where distinct sub-grouping can be recognised.53-55 170 

In inference statistics, data are assessed using data models based on specific assumptions, which vary 171 
according to the test used. These could include assumptions such as normal distribution, linear 172 
relationship, homoscedasticity (equal variances) of errors, and independence of variables.56,57 The 173 
validity of the tests used is then assessed to judge if the findings of the data model are applicable to 174 
the data being explored. For instance, in regression analysis, goodness-of-fit tests and residual analysis 175 
tests are used while correlation coefficient in correlation can be estimated.4,53,56 176 

Most AI algorithms in medicine are designed to estimate the risk (prediction) of a patient having an 177 
event presently (diagnosis) or developing one in the future (prognosis).38,40,58 The way AI and ML carry 178 
out a prediction is not always explainable (except for some explainable ML tools such as decision 179 
trees). One reason is that the exact structure of algorithms in AI and ML are not known, or not 180 
disclosed, unlike in conventional statistical tools. Hence there would be no tests similar to those of 181 
goodness-of-fit however instead the prediction function can be validated using test accuracy methods 182 
(sensitivity, specificity, and receiver operating characteristic curve (ROC curve) and Area Under the 183 
ROC Curve (AUC or AUROC)41,59 by comparing the prediction results to the observed outcome (such as 184 
death or cancer recurrence), or to existing gold standard (assessment ovarian cancer burden on CT by 185 
an expert radiologist for example)4. In general, an AUC of 0.5 suggests that the test lacks the ability to 186 
differentiate (for example between patients who might and those might not develop cancer 187 
recurrence), 0.7 to 0.8 is acceptable, 0.8 to 0.9 is considered excellent, while > 0.9 suggests an 188 
outstanding performance of the algorithm60. It is worthy of noting that metrics alone do not always 189 
reflect the quality of ML prediction which has spurred recent research into their interpretability. 190 

3 Cervical cancer 191 

Cervical cancer is caused by persistent infection with high-risk strains of human papilloma virus 192 

(HPV)61-2 which are found in 99.7% of cervical cancers globally.63 The discovery of the causation role 193 

of HPV in cervical cancer has led to two practice-changing developments; HPV-based screening and 194 

HPV vaccination64-66. Typically, cervical cancer is diagnosed on histological examination of cervical 195 

biopsy and often radiological assessment is used when available to predict parametrial invasion, 196 

lymph nodes involvement and any distant metastases. The treatment of cervical cancer is largely 197 

surgical resection in early stages and chemoradiotherapy in advanced and recurrent disease67-69. 198 

Cervical cancer is the fourth most common cancer in women globally and the commonest of the 199 

gynaecological cancers.70 The relatively low incidence of cervical cancer in high-income countries such 200 

as the UK can be attributed to the success of universal screening programmes and the introduction of 201 

the HPV vaccine, which demonstrated the preventable nature of this disease.71-2 Cervical cancer 202 

reflects a profound socioeconomic variation73, it burdens mostly low- and middle-income countries 203 

where 90% of cervical cancer deaths occur.74 It disproportionately affects young women, and can have 204 

a devastating effect on their families and young children.74 The World Health Organization (WHO) has 205 

therefore launched its global strategy to accelerate the elimination of cervical cancer by 2030 by 206 

offering more screening and vaccination to all women and young girls globally.75 207 

3.1 AI perspectives in cervical cancer  208 

Cervical cancer has been a prime focus for AI research, we have found that the majority of published 209 

articles investigating AI in gynaecological cancers are in the cervical cancer domain; these appear to 210 

focus on screening, staging and radiotherapy.76 211 
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Perhaps it is not surprising that one of the earliest attempts to investigate AI in medicine was in 212 

cervical cancer screening.77 In fact the role of AI in cervical cancer screening research can illustrate 213 

how AI is transforming medical practice.78 Automation of cervical cancer screening has been an urgent 214 

need, since cytology-based assessment was widely introduced, given the large number of smears 215 

performed globally, with up to 200,000 cell per slide.79,80 In the 1950s, Cytoanalyzer was one of the 216 

early attempts in this field, however this was by using traditional computing.81 The clinical field then 217 

was dominated by automation using conventional algorithms such as ThinPrep Imaging System and 218 

the Becton Dickinson Focal Point GS Imaging System.82-84. Interestingly, in 1995, PapNet received FDA 219 

approval85 and it was one of the earliest AI-enabled medical devices where it used NN to identify 220 

abnormal smears based on malignant and premalignant morphologic criteria.86,87 221 

3.2 AI: Prognostication in cervical cancer  222 

One systematic review addressing ML research in cervical cancer prediction (screening, detection 223 

survival and recurrence rates) has identified 50 articles, 33 of which were published in Asia with only 224 

seven articles in Europe and seven studies in America. This systematic review also found that AI 225 

models performed differently with CNN achieving the highest positive predictive value (PPV) of 99.5, 226 

while KNN had a modest PPV of 80.7.88 A more recent systematic review looked at the use of ML in 227 

survival predictions for cervical cancer patients found 13 suitable articles which used a variety of AI 228 

models most commonly RF. It also reported a wide range of AUC: 0.40 – 0.99. The authors also 229 

recognised that of interpretability, explainability, and imbalanced datasets remained one of the 230 

biggest challenges facing AI research in cervical cancer89. 231 

3.3 AI in cervical cancer screening 232 

3.3.1 AI in cervical smear screening 233 

Shen et al investigated the cost-effectiveness of three screening methods: HPV testing, manual liquid-234 

based cytology (LBC) and AI-assisted LBC testing with six different frequencies for each (18 screening 235 

strategies) in a cohort of 100,000 women. They concluded that the most cost-effective method would 236 

be AI-assisted LBC every 5 years.90 Assessment of cloud-based DL system to analyse digitalised cervical 237 

smear slides (using portable whole-slide microscope scanner and uploaded with mobile network in 238 

rural Kenya) when samples from a small (740) high-risk women (infected with human 239 

immunodeficiency virus (HIV)) used to train and test the system to achieve detection of atypia 240 

sensitivity 100% and specificity 78.4% (cytologist assessing physical slides was the gold standard).91 A 241 

cohort study of more than 700,000 women showed an concordance rate of 94.7%, Kappa 0.92 242 

between AI and manual cytology. When considering histologically confirmed cervical intraepithelial 243 

neoplasia grade 2 or worse (CIN2+) (also known as high-grade squamous intraepithelial lesion [HSIL]) 244 

the sensitivity was (90.1% vs 84.3%) and specificity was (94.8% vs 95.2%) of AI compared with manual 245 

cytology respectively.92 246 

3.3.2 AI in cervical cancer clinical screening 247 

Clinical inspection can be used In low resource settings where there is a limited access to smear-based 248 

screening for cervical cancer.93 A systematic review evaluating AI-based cervical cancer screening 249 

using images taken during visual inspection with acetic acid (VIA) identified 11 suitable articles with 250 

sensitivity and specificity, ranging from 0.22 to 0.93 and 0.67 to 0.95, respectively. It was noted that 251 

these studies used highly selected images which would not necessarily represent routine practice.94 A 252 
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frequently faced challenge in image capture is the movement of the cervix during acetic acid 253 

assessment due to the patient or camera moving. Guo et al have developed a self-supervised RGB-254 

colored DL-based image registration method to automatically align the images, which does not require 255 

manual input. This has improved the Dice score by an average of 12.6% 95.  256 

3.4 AI in cervical cancer histopathology 257 

Whole slide imaging (WSI) segmentation and analysis have the potential to predict survival and 258 

develop improved treatment plans for patients. A potential association between histological image 259 

and cervical cancer prognosis was investigated using a deep neural network (DNN) to extract potential 260 

risk factors from WSI to predict overall survival and disease-free survival with AUC of 0.80.96 A fully 261 

automated cervical lesion analysis of conventional cervical smear samples - using WSI - was performed 262 

for the first time. Each image is converted into a tile-based pyramid format to handle gigapixel data 263 

efficiently and then fed into a multi-layer DL architecture. This system uses a coarse-to-fine strategy 264 

for semantic segmentation and tissue detection, making it ideal for rapidly identifying CIN2+/HSIL 265 

lesions. At the coarse level, the goal is to quickly identify tissues of interest for further screening, 266 

whereas, at the satisfactory level, HSILs are discovered using the findings of the first screening. The 267 

proposed system is capable of segmenting HSIL or higher lesions with PPV of 0.93 and sensitivity of 268 

0.90.97 269 

3.5 AI in cervical cancer radiology 270 

3.5.1 AI prediction of lymphadenopathy and parametrial invasion in cervical cancer 271 

The diagnosis of lymph node metastasis or parametrial involvement in cervical cancer patients is 272 

clinically relevant as it could identify patients whose cancer is too advance to recommend surgical 273 

treatment.98 One systematic review and meta-analysis study investigating AI use for preoperative 274 

prediction of lymph node metastasis in abdominopelvic malignancies identified 17 studies of sufficient 275 

reporting quality, five of which were in cervical cancer patients. It found that in gynaecology cancers, 276 

the pooled AUC was 0.893, (95 %CI, 0.847−0.939) for AI which outperformed radiologist-pooled AUC 277 

of 0.749 (95 %CI, 0.656−0.842) when histology was used as the diagnostic endpoint.99  278 

Systematic review by Charoenkwan et al have used RF model in retrospective data to predict 279 

parametrial involvement with cancer in patients who had surgical resection. Interestingly they used 280 

histological and clinical data rather than radiology, some of this data would not usually be available 281 

prior to surgical resection of cancer which would raise questions about its usefulness in clinical 282 

practice even in low-resource countries with limited access to cross sectional radiology100. 283 

3.5.2 AI in cervical cancer radiotherapy planning 284 

A systematic review of DL in CT image segmentation for radiotherapy in cervical cancer patients 285 

identified 14 articles reporting Dice Similarity Coefficient (DSC) for clinical target volume (CTV) or 286 

organ at risk (OAR), which ranged between 0.83 and 0.92. This lead the authors to conclude that DL 287 

has good accuracy in automatic segmentation of CT images of cervical cancer.101 288 

 289 



 8 

4 Uterine malignancy 290 

4.1 Endometrial cancer 291 

Endometrial cancer is the most common gynaecological malignancy in high-income countries, with 292 

increasing incidence and mortality due to, at least in part, ageing population and prevalent obesity. 293 
102-103 Generally, endometrial cancer patients have a relatively good prognosis since most present with 294 

postmenopausal bleeding (PMB) which leads to early diagnosis and treatment. Typically, endometrial 295 

cancer is diagnosed on histological examination of endometrial biopsy, and staged with radiology 296 

assessing particularly the depth of myometrial invasion (MI), the involvement of lymph nodes and any 297 

distant metastases. Treatment of endometrial cancer patients could include surgical resection, 298 

radiotherapy and chemotherapy according to the cancer stage and characteristics.104,105  299 

4.1.1 AI in endometrial cancer histopathology 300 

Levine et al, from the TCGA research network, proposed a four-category classification for endometrial 301 

cancer based on integrated genomics, transcriptomics and proteomics. These are polymerase epsilon 302 

(POLE) ultramutated, microsatellite instability hypermutated, copy-number high, and copy-number 303 

low groups.106 Subsequently, surrogate markers were shown to distinguish these four groups into 304 

POLEmut, mismatch repair deficient (MMRd), p53abn and non-specific molecular profile (NSMP) 305 

respectively.107 This classification system has recently been adopted to stratify cancer risk for mortality 306 

and recurrence; has formed the basis for an international trial investigating targeted management108, 307 

and has been incorporated into the International Federation of Gynecology and Obstetrics’ (FIGO) 308 

most recent staging system.109-112 309 

AI has emerged as a promising tool in endometrial cancer research, potentially improving diagnostic 310 

accuracy, risk stratification and treatment planning. Fremond et al investigated interpretable DL 311 

pipeline for WSI-based prediction of the endometrial cancer four molecular groups using H&E slides 312 

obtained from the Post-Operative Radiation Therapy for Endometrial Carcinoma (PORTEC) trials. This 313 

model was able to allocate patients into these groups with AUROC of 0·849, 0·844, 0·928 and 0·883 314 

for POLEmut, MMRd, p53abn and NSMP respectively. This study can be seen as a good example of 315 

collaboration among pathologists, clinicians, and clinical and AI scientists to address important clinical 316 

issues relevant to patients’ care.113 317 

4.1.2 AI in endometrial cancer imaging 318 

4.1.2.1 AI prediction of myometrial invasion in endometrial cancer 319 

The depth of myometrial invasion (MI) in endometrial cancer is an important clinical criterion; not only 320 

does it determine the cancer stage and thus guide treatment options, it is also used in the NHS to 321 

triage patients for secondary or tertiary care facility for surgical treatment.105 Several studies have 322 

developed ML and DL tools to detect MI. The efficacy of DL using T2-weighted imaging (T2WI)-based 323 

MR was assessed in 530 patients with pathologically confirmed endometrial cancer. DL-based 324 

detection and classification algorithms were developed to automatically locate the cancer area and 325 

calculate the MI depth. This model achieved an average accuracy of 77.14% in sagittal images and 326 

86.67% in coronal images for lesion identification and reported accuracy of 84.78% detecting deep MI. 327 

Combining the knowledge of radiologists with a trained network model improved accuracy to 328 

86.2%.114 The same research group later developed a technique which first used the U-net to segment 329 

tumour and uterus on MR images, and then analysed the segmentation pictures for MI depth using 330 
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three AI models (rapid thinning, fit-ellipse, and area ratio), they reported accuracy of 87.1%, 90.3% 331 

and 85.8% respectively.115 A pilot study evaluating radiomics-powered ML to detect deep MI in 54 332 

endometrial cancer patients, 17 of whom had deep MI. This was a multistep model, radiologists 333 

performed lesion segmentation, features were extracted, and an RF wrapper was then used to select 334 

the most informative features - followed by an ensemble of J48 decision trees. This model achieved 335 

accuracy of 91% in testing data, which also appeared to improve radiologists’ performance when using 336 

ML.116 337 

4.1.2.2 AI prediction of lymphadenopathy in endometrial cancer 338 

AI models have been evaluated for the prediction of lymph node metastasis in endometrial cancer. A 339 

recent systematic review of the role of ML in preoperative identification of lymph node involvement 340 

found 50 studies with 103,752 patients, including 12,579 with positive lymph node on histopathology. 341 

The best performing model was that constructed by combining radiomics and clinical features with 342 

pooled sensitivity and specificity of  0.81(95%CI: 0.70-0.89) and 0.84(95%CI: 0.76-0.89) respectively, 343 

which outperformed clinical decisions using Mayo criteria117 in its specificity 0.59(95%CI: 0.38-0.77) 344 

while maintained the sensitivity rate 0.81(95%CI: 0.66-0.90).118 Similarly, Yan et al used MR radiomics 345 

aided with an AI model (MRMR) to predict lymph node involvement in patients who had 346 

lymphadenectomy for confirmed endometrial cancer. Their model achieved AUC of 0.91 compared 347 

with 0.81 and 0.84 for two radiologists.119 In a systematic review by Lecointre et al in 2021, 17 articles 348 

were identified that used AI-based radiomics in endometrial cancer for the prediction of MI and lymph 349 

node and lymphovascular space involvement. The authors concluded that while this was a promising 350 

field, there was insufficient evidence on the advantages of AI-based radiomics in endometrial 351 

cancer.120 352 

4.2 AI in uterine smooth muscle neoplasms 353 

The differentiation between uterine leiomyosarcoma and leiomyoma is a clinically challenging one, 354 

particularly in women who wish to preserve their fertility. A systematic review in 2021 found six 355 

studies that predominantly used AI and radiomics on MR images. The authors of the review concluded 356 

that there was insufficient evidence to support radiomics in clinical leiomyosarcoma diagnosis.121 A 357 

more recent study, which included 200 leiomyoma patients and 63 leiomyosarcoma patients showed 358 

that DNN model had a comparable accuracy diagnosing sarcoma to experience radiologist (91.3% and 359 

88.3% respectively) but superior to that of less experienced radiologist (accuracy 80.1%).122 360 

5 Ovarian cancer 361 

Ovarian cancer is a heterogeneous disease at anatomical, cellular and molecular pathway 362 

aspects.123,124 Ovarian cancers can be epithelial or non-epithelial. Non-epithelial ovarian cancers are 363 

germ cell tumours (such as immature teratoma) or sex cord stromal cancers (e.g. granulosa cell 364 

tumour)125. Epithelial ovarian cancers include high-grade serous carcinoma (HGSC) and low-grade 365 

serous carcinoma, which are currently viewed as two distinct diseases rather than one malignancy 366 

with two grades.126 The most common ovarian cancer, and one with a poor prognosis, is HGSC.124 It is 367 

now well accepted that the majority of HGSC arise from the fallopian tube precursor lesions, while 368 

rare cases may arise from the peritoneum in addition to the ovarian origin. Thus it is referred to as 369 

HGSC of tubo-ovarian or primary peritoneal origin. The term ‘ovarian cancer’ is often used as an 370 

umbrella term to refer to these groups of cancers.125,127-129 Treatment for ovarian cancer broadly 371 

consists of maximum cytoreductive surgery which aims to achieve complete cytoreduction (also 372 
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known as no macroscopic residual disease [NMRD]), and systemic anticancer therapy (SACT), which 373 

include chemotherapy (platinum-based generally) and targeted therapies such as poly adenosine 374 

diphosphate ribose polymerase inhibitors (PARPi) and anti-angiogenetic agents.124,127  375 

5.1 AI Perspectives in Ovarian Cancer  376 

The recent growing appreciation of the heterogeneity of ovarian cancer has paved the way for more 377 

targeted and personalised treatment options.123 In addition, the availability of multiple data sources 378 

such as electronic patient records, radiology, digital histopathology images, and biomarkers, has also 379 

offered new opportunities for utilising AI models to address existing clinical challenges as well as to 380 

explore new ones. AI has shown great promise in ovarian cancer research, with numerous studies 381 

exploring its potential to improve diagnosis, treatment, and prognosis. In recent years, there has been 382 

growing interest in integrating multiple data types, such as radiogenomics, multi-omics, and fluxomics 383 

data, to improve our understanding of ovarian cancer and develop more effective diagnostic and 384 

treatment strategies. 385 

AI-based research in ovarian cancer appears to have focused on diagnosis, prognosis, prediction of 386 

surgical resectability and the response to chemotherapy. A systematic review that identified 39 387 

studies investigating ovarian cancer diagnosis and prognosis, found that the majority (19 studies) used 388 

high-throughput omics data, while 13 utilised serum biomarkers and electronic patient records, with 389 

7 studies using histopathology or radiology images.130 This is interesting, since in the current clinical 390 

practice, imaging and biomarkers are dominantly used for clinical decision making. While this might 391 

reflect the availability and suitability of omics data for AI-based research it could also indicate the 392 

direction for future research in ovarian cancer. Importantly, this review found that the quality of the 393 

studies was not entirely satisfactory, with wide gaps in the predictive performances of AI models. This 394 

review also pointed out the importance of AI model selection to suite the type of investigated data. 395 

For example, support vector machine (SVM) appeared to be suitable for ovarian cancer diagnosis using 396 

ultrasound scan imaging, while deep convolutional neural networks (DCNN) algorithm reached a 397 

modest accuracy of 78.20% in Haemotoxylin and Eosin (H&E) histology slide images.130,131 398 

5.2 AI: Treatment Planning in Ovarian Cancer 399 

5.2.1 AI in Pelvic Mass Stratification 400 

Several studies have investigated the performance of AI models in determining the nature of ovarian 401 

mass (malignant, benign, or borderline), which is a relevant and common clinical encounter. In 402 

addition, malignancy risk prediction of pelvic masses is currently to triage patients to surveillance, 403 

secondary treatment or cancer centre surgery.132,133 One systematic review and meta-analysis of 404 

literature in the English and Chinese languages identified 11 studies that investigated the use of AI 405 

technology using radiology images in ovarian cancer diagnosis. It found a pooled AUROC of 0.94 (95% 406 

CI 0.88-1.00), 0.82 (95% CI 0.71–0.93) and 0.82 (95% CI 0.78–0.86) for ultrasound, MR and CT 407 

respectively.134 Another systematic review evaluating AI in ultrasound imaging has also suggested a 408 

better performance for AI utilising ultrasound compared with MR and CT, with a pooled AUC of 0.95 409 

(0.93−0.97), 0.90 (0.87−0.92), and 0.82 (0.78−0.85) respectively. When compared with human 410 

clinicians the pooled AUC was 0.91 (0.88−0.93) for AI and 0.85 (0.81−0.88) for human clinicians. This 411 

systematic review did not find a significant difference in the performance of ML and DL with pooled 412 

sensitivity and specificity of 89% (85−92%) and 88% (82−92%) for ML and 88% (84−91%) and 84% 413 

(80−87%) for DL, respectively135. A systematic review specifically looking at AI in ultrasound diagnosis 414 
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of ovarian cancer identified 14 studies with a wide range of sensitivity and specificity rates, 40%-99% 415 

and 76%-99%, respectively. The identified studies used varying AI models such as SVM, DCNN, K-416 

nearest number classifier (KNN), decision tree (DT), DNN and probabilistic neural network (PNN). 417 

However, it was challenging to compare AI modality performance given the heterogeneity in 418 

methodology including feature extraction and segmentation techniques.136 419 

One study using four AI classifiers KNN, SVM, random forest (RF) and logistic regression (LR) on CT 420 

images has found that an ensemble model (combined radiomics, DL, and clinical data) outperformed 421 

each model individually with a test accuracy of 82% in cases with confirmed histological diagnosis. This 422 

was comparable to senior radiologists (> 10 years’ experience) but outperformed radiologists with less 423 

than 10 years’ experience (respective accuracy 83% and 66%).137 Another study investigated MR based 424 

single-and-multiparameter (MP) ML model to distinguish borderline ovarian tumours from early stage 425 

ovarian cancers, as confirmed by histology, achieved AUC of 0.920 compared to AUC 0.797 for 426 

radiologists.138 Concordant conclusions were reached by another group, which constructed a late 427 

multiparametric (LMP) model based on multiple instance convolutional neural network (MICNN) to 428 

distinguish borderline from malignant ovarian tumours as confirmed by histology, achieving AUC of 429 

0.884 (95%CI 0.831-0.938) compared to pooled AUC of 0.797 for radiologists.139 Similarly, Wang et al 430 

have shown that DL outperformed radiologist in distinguishing borderline from malignant tumours 431 

with AUCs of 0.87 and 0.75 resepectively.140 This remains an area of active research, particularly with 432 

new work highlighting end-to-end radiomics-based model capable of adnexal mass segmentation and 433 

classification, with a comparable predictive performance (AUC 0.90) to the published performance of 434 

expert subjective assessment (gold standard), and current risk models. The false discovery and false 435 

positive rate levels of the best models currently in the field encourages use of these AI tools in a two-436 

step approach: to initially identify the ‘high-risk’ adnexal mass that warrant further evaluation by an 437 

expert ultrasound examiner in a second step, thus reducing clinical workload.141 438 

Another study sought to use the ML Minimum Redundancy - Maximum Relevance (MRMR) feature 439 

selection method applied to biochemical markers, and achieved sensitivity and specificity of 1.00 and 440 

0.90 (compared to 0.92 and 0.97 respectively when the risk of ovarian malignancy algorithm (ROMA) 441 

was used).142 Reilly et al have developed an ovarian cancer risk assessment tool in women with known 442 

pelvic masses. They called it multivariate index assay (MIA3G), which is a deep feedforward neural 443 

network model using features of patient age, menopausal status and seven biomarkers: cancer 444 

antigen 125 (CA125), human epididymis protein 4 (HE4), beta-2 microglobulin, apolipoprotein A-1, 445 

transferrin, transthyretin, and follicle-stimulating hormone. They used over 3,000 patients to train, 446 

test and validate this tool, with an impressive negative predictive value (NPV) of 99.38% in a 447 

population with a prevalence of 4.9% however this was at the cost of a reduced PPV of 22.45% and 448 

low sensitivity in early stage cancer (76.92%).143 Ahmad et al investigated several biomarkers-based 449 

ML models including RF, SVM, decision tree (DT), extreme gradient boost (XGBoost), LR, Gradient 450 

Boosting Machine (GBM) and Light Gradient Boosting Machine (LGBM) with accuracy ranging between 451 

0.59% and 91% distinguishing malignant from benign cases.144  452 

5.2.2 AI Prediction of peritoneal metastasis in ovarian cancer 453 

AI has been applied in ovarian cancer research in radiomics analysis. Quantitative imaging features 454 

were extracted from preoperative MR images. Feature screening was performed using a minimum 455 

redundancy maximum correlation (MrMc) and least absolute shrinkage selection operator (LASSO) 456 

methods. Four radiomics models were constructed based on three MR sequences. Then, combined 457 
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with radiomics characteristics and clinicopathological risk factors, a multi-factor logistic regression 458 

method was used to build a radiomics nomogram. The radiomics nomogram based on the combined 459 

multiparametric MR (MP-MR) sequence showed good predictive accuracy for peritoneal 460 

carcinomatosis in patients with ovarian cancer (AUC 0f 0.90), allowing for identifying PC in ovarian 461 

cancer patients before surgery.145 The association between protein abundance and various CT image 462 

traits and texture features in patients with HGSC was investigated using the Kendall tau rank 463 

correlation coefficient and the Mann-Whitney U test.146 A potential connection between CT-based 464 

tumour heterogeneity metrics and protein abundance was revealed for the first time. The connections 465 

with argininosuccinate synthase 1 (ASS1) were the most intriguing.146 The protein abundance of 466 

cysteine-rich protein two was inversely linked with tumour involvement of the mesentery, a known 467 

major limiting factor for primary debulking surgery (CRIP2). Even after controlling for multiple testing, 468 

this connection remained statistically significant. CRIP2 is a tumour suppressor and a regulator of cell 469 

proliferation.147,148 In addition, supradiaphragmatic lymphadenopathy was positively linked with the 470 

protein abundance of MAGE family member A4 (MAGE4). Increased MAGE4 expression in ovarian 471 

cancer cells is an independent predictor of mortality related to reduced overall survival. Similar studies 472 

of CT radiomics have provided linkage to ovarian cancer phenotypes or integration of phenotypic 473 

information to improve prediction.149-152 474 

5.2.3 AI Prediction of lymphadenopathy in ovarian cancer 475 

In an interesting attempt, Yao et al used residual neural network (RNN) and SMV models on 476 

Fludeoxyglucose F18 (18F-FDG) positron emission computed tomography (PET) in apparently early-477 

stage ovarian cancer patients to evaluate lymph node metastasis. They reported an impressive 478 

performance of their model with AUC of 0.93 (95% CI 0.84-0.99), sensitivity of 81% and specificity of 479 

100% when compared with final H&E histology assessed by human histopathologists. Unfortunately, 480 

this study did not provide details of the surgical procedure, the extent of surgical lymph node 481 

dissection or the number of lymph nodes excised.153 482 

5.2.4 AI prediction of cytoreductive surgery outcome in ovarian cancer 483 

One ultimate clinical goal in the management of ovarian cancer patients is to offer cytoreductive 484 

surgery for only those who are likely to benefit from this extensive surgery.154 One review has looked 485 

at the role of AI in predicting NVRD in ovarian cancer patients, it identified only 2 studies with a modest 486 

accuracy of 77.7% and 65.8%.58,155,156 Laios et al used XGBoost to construct an intraoperative scoring 487 

system in patients undergoing cytoreductive surgery for advanced ovarian cancer which was found to 488 

predict NMRD with AUC 0.88 (95% CI 0.85-0.91).This was found to be superior to Peritoneal 489 

Carcinomatosis Index (PCI) and the Intra-operative Mapping for Ovarian Cancer (IMO) scoring systems, 490 

which had AUC of 0.73 and 0.67 respectively.157 Maubert et al have shown - using intraoperative 491 

findings in patients undergoing cytoreductive surgery and hyperthermic intraperitoneal 492 

chemotherapy (HIPEC) of whom 153 patients (49%) had gynaecological cancers - that RF model 493 

surpassed, with an accuracy of 98%, other classification algorithms, which included simple 494 

classification, conditional tree (CT) and SVM, in predicting resectability of peritoneal carcinomatosis.158 495 

In another study, using preoperative data which included radiology, age, CA‐125, performance status, 496 

BRCA status, and surgical complexity scores, it was reported that an RF model can successfully predict 497 

complete cytoreduction (residual disease 0 cm/NVRD) and optimal cytoreduction (residual disease ≤ 498 

1 cm), with AUC of 89.0% and 84.0% respectively.159 499 
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5.3 AI in ovarian cancer histopathology 500 

Histopathologic diagnosis is one area where AI has been applied in ovarian cancer research. A DL -501 

based approach was applied to evaluate histopathologic patterns in ovarian cancer. The first step was 502 

to segment ovarian cancer regions from WSI. Then, a deep interactive learning approach was used to 503 

efficiently train the ovarian segmentation model, achieving an intersection-over-union (IoU), 504 

sensitivity and PPV of 0.74, 0.86 and 0.84 respectively; and automatically extracting HGSC patches. 505 

After segmentation, a BRCA classification model processed cancer patches to produce patch-level 506 

scores indicating the likelihood of a BRCA mutation, AUC for BRCA classification ranged between 0.49 507 

and 0.67 on the validation dataset.160 Another study applied an attention-based NN to predict somatic 508 

BRCA1/2 gene status and survival data. The model was tested on a cohort of 664 ovarian cancer 509 

patients, of whom 233 (35.1%) had a somatic BRCA1/2 mutation. The training and testing sets 510 

achieved an area AUC of 0.7 and 0.55, respectively.161 511 

The identification of tubal intraepithelial carcinoma (STIC), which is a precursor for HGSC, and tubal 512 

intraepithelial lesion (STIL) has been explored by Boaerts et al. They investigated a DL algorithm (U-513 

Net with resnet50 backbone) to distinguish STIC/STIL from benign tissues on WSI from 682 patients. 514 

They achieved AURC 0.95 (95% CI: 0.90–0.99) on the external test data when compared to panel 515 

review of specialist gynaecology pathologists.162 Another group used digital H&E WSI to predict the 516 

effectiveness of treatment with bevacizumab in ovarian cancer patients. They used a two-step hybrid 517 

DL framework which included efficient weekly supervised cascaded DL for rapid identification of 518 

regions of interest (ROIs) followed by DL based classifier to predict treatment effectiveness. This 519 

precluded the need for human pathologist input and achieved a high accuracy of 0.882 and sensitivity 520 

of 0.912.163 Ma et al have constructed an ovarian cancer-specific predictive framework to inform 521 

clinical use in terms of platinum response and prognosis. They utilised multiple biomarkers including 522 

circulating tumour cells (CTCs) to investigate the performance of eight ML classifiers: RF, SVM, 523 

Gradient Boosting Machine (GBM), Conditional RF, NN, Naive Bayes, Elastic Net, and LR. RF model 524 

came on top in predicting platinum-resistance with AUC of 0.81.164 525 

5.4 AI in precision medicine for ovarian cancer 526 

AI has been used in biomarker discovery and to explore mechanisms underlying ovarian cancer. An 527 

ML algorithm was applied to analyse the proteomic dataset from ovarian cancer patients, TOP1, 528 

PDIA4, and OGN was identified as candidate biomarkers and potential mechanisms underlying the 529 

disease. This approach improves the understanding of ovarian cancer and guides the development of 530 

new treatments.165  531 

A potential capability of ML models is to help predict the effectiveness of pharmacological therapy 532 

based on the individualised genetic profiles of patient tumours, an important goal of contemporary 533 

cancer medicine.166 Since several alternative biochemical pathways can contribute to the 534 

development of the same cancer type, the responses of different individuals to the same 535 

chemotherapeutic agent might vary considerably. Therefore, the transcriptomics data were analysed 536 

using SVM to enhance the predictability of patients' responses to therapy. Using gene expression 537 

profiles of 152 cancer patients obtained from the TCGA database, the response of individual patients 538 

treated with gemcitabine or 5-FU was predicted with >81% accuracy.166 539 

Utilising data from the cancer genome atlas (TCGA), Chen et al used gradient boosting decision tree 540 

(GBDT) algorithm to analyse genetic interactions related to chemoresistance in ovarian cancer. They 541 
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identified 24 signature gene pairs and 10 individual signature genes with AUC for chemoresistance 542 

prediction of 0.97 and 0.68 respectively. The authors concluded that these findings could improve 543 

clinical practice and inform decision-making and treatment choices for patients and their clinicians.167 544 

Another study also used gene expression data, indicating genes such as TLR4, BSCL2, CDH1, ERBB2, 545 

SCGB2A1, and BRCA2 as critical prognostic indicators.168  546 

6 Ethical considerations 547 

AI implementation in gynaecologic oncology, in line with other health care domains, raises several 548 

controversial issues which should be carefully addressed to ensure a safe, effective, and equitable use 549 

of this technology. These considerations include cybersecurity, data protection, bias and equity, 550 

accountability, validity, and reliability. The impact on patients’ experience and health workers’ skills 551 

and job security is a real concern too.  552 

Cybersecurity and data protection in AI is of paramount importance. AI relies on access to large 553 

amounts of patient data, including sensitive information such as medical history and genetic 554 

information. These data must be protected from cyber threats such as hacking, data breaches, and 555 

ransomware attacks. Health organisations and researchers must take the appropriate measures to 556 

ensure the privacy and security of patients’ data. Another significant concern is the potential inequity 557 

in AI algorithms where there is the potential for AI reinforcing existing biases in healthcare, particularly 558 

concerning race, ethnicity, and socioeconomic status compromising further equal access to medical 559 

care. AI outcome is driven by the quality of training data used, if the data are incomplete or not 560 

inclusive, this could lead to wrong results or inappropriate treatment recommendation. This could 561 

affect some patients more than others according to the representativeness of training data (race, 562 

ethnicity, socioeconomic class, or place of residence). Therefore, health organisations and researchers 563 

must carefully consider issues of equity and bias in developing and implementing AI algorithms to 564 

ensure that they are fair and accurate for all patients.169  565 

Additionally, the lack of interpretability of most AI models could hinder incorporating AI results into 566 

clinical decision-making. While AI system may produce accurate results, it can be difficult for clinicians 567 

to understand how the algorithm arrived at its conclusions, making it hard to support their 568 

implementation. One other challenge is the transparency in AI systems in healthcare and subsequently 569 

with the liability for AI-based clinical outcomes. In addition to jurisdiction consideration, the ‘black 570 

box’ nature, where the exact final structure of the constructed algorithms is unknown or cannot be 571 

known, which could form a major obstacle.170,171 Accountability is another critical ethical consideration 572 

when implementing AI in health care, as questions are raised, i.e: who is responsible for unintended 573 

consequences if they occur? Would that be the clinician in direct contact with patients, the hospital 574 

employing that clinician, or the company marketing the used AI system? Health organisations and 575 

researchers must ensure that AI systems are transparent, explainable, and accountable. Patients must 576 

be helped to understand how AI is used in their care, and health workers must be trained to interpret 577 

and act on AI-generated results appropriately. The validity and reliability of AI algorithms are also 578 

important considerations. Health organisations and researchers must ensure that AI algorithms are 579 

validated and tested rigorously to provide accurate and reliable results. AI should not replace clinical 580 

judgment or patient input but rather be used to augment and inform clinical decision-making.172,173 581 

Finally, the implementation of AI models in gynaecologic oncology may impact patients’ experience 582 

and health workers’ skills and job security. Patients may feel uncomfortable or sceptical about the use 583 
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of AI in their care, and health workers may feel threatened by the potential for AI to replace or reduce 584 

their role with negative impact on career satisfaction, and financial constraints affecting families. 585 

Therefore, health organisations should ensure that patients are informed about the use of AI in their 586 

care and that health workers are trained to use AI appropriately and to understand its limitations.174,175  587 

7 Discussion  588 

While AI has shown promise in gynaecological oncology, there are still limitations to its 589 

implementation in clinical practice. AI research in gynaecology oncology appears to be more 590 

concerned with discovering the best AI model fitting available data and identifying algorithms with 591 

the highest AUC rate, rather than addressing the patients’ priorities and investigating clinical needs. 592 

The developers of this paper have found a few precious examples of productive collaboration among 593 

AI scientist, biology scientist and clinicians.113 AI could be a powerful tool in areas of pressing need for 594 

academic and clinical progress, such as symptom-based early diagnosis of ovarian cancer, endometrial 595 

cancer stratification, chemotherapy resistance prediction and cervical cancer screening in low- and 596 

middle-income countries. In fact, there have been several publications setting priorities and goals as 597 

seen by patients and their clinicians that we recommend AI investors and investigators can consult for 598 

future guidance.176-180 599 

It is possible that the reason underpinning this phenomenon is that AI scientists are limited with their 600 

research to the data they have access to. However, this could be compromising AI research results in 601 

that these data are not AI specific, they were collected selectively to suit existing tools for which AI 602 

algorithms might not be able to exercise their full intelligence given that the ‘missing’ uncollected data 603 

might be important predictive features. Another challenge with existing data is the need to make them 604 

AI-compatible. This is called data curation, a process which includes filtering, cleansing, integration, 605 

alteration and reduction. On some occasions, this can hinder the data, which become less 606 

representative, too ideal.39 This ultimately could affect the performance of AI models trained and 607 

tested in noise-reduced datasets, leading to difficulty maintaining performance when implanted in 608 

real-world data (overfitting).9 There are several other challenges faced when implementing AI in the 609 

healthcare system, other than where it was trained, which should be taken into account when 610 

considering generalisability. These include differences in clinical practice according to health system 611 

type and settings, to jurisdiction, or as they evolve over time; patients’ demographics, social and 612 

cultural characteristics, and genotypic and phenotypic specifics. In addition to the wide range of 613 

hardware and software used to capture data and the type of data collected. 59,181 Some obstacles can 614 

be practice-specific, for example the IBM Watson for Oncology, trained by specialists in Memorial 615 

Sloan Kettering Cancer Center (MSK), has some of its recommended management plans ignored in 616 

health systems with practices dissimilar to that where it was trained. 5,182-185 Perhaps, a crucial obstacle 617 

for AI implementation is the lack of clinical trials demonstrating and evidencing AI benefits to patients 618 

with gynaecological cancers. 619 

Regulatory and ethical issues must be addressed before AI can be widely adopted in gynaecological 620 

oncology. These include issues related to data privacy and security, as well as the potential for AI to 621 

replace human expertise and decision-making. Despite these limitations, AI has the potential to 622 

significantly improve the accuracy and efficiency of gynaecological oncology diagnosis and treatment. 623 

Ongoing research and development will be critical to addressing these challenges and realising the full 624 

potential of AI in this field.  625 
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8 Conclusion  626 

AI is a collective set of self-teaching algorithms used by multiple computer programs in our daily lives. 627 

AI has emerged as a powerful tool in gynaecology oncology which is likely to shape future clinical 628 

practice. 629 

It is currently in clinical use in automated cytology in cervical smears and has shown good results in 630 

the fields of cervical cancer screening, staging and radiotherapy planning. AI models are investigated 631 

in endometrial cancer staging and prediction of malignant potential in uterine tumours. In ovarian 632 

cancer, AI has been shown to aid triaging of pelvic masses, predict cancer stage and resectability. 633 

Although several ML and DL models have been proposed for the integration of multi-omics and image 634 

data for gynaecological cancers, several challenges remain to deploy and improve these methods, 635 

such as the lack of single-cell RNA-seq data with different available data types and treatment 636 

information, the simulation of intra-omics interactions, and incorporating multimodal data into a 637 

machine learning model that can be interpreted biologically. Moreover, further research and 638 

validation of these methods are needed to ensure their effectiveness and safety in clinical settings. 639 

To date, AI remains largely in the research phase in gynaecological cancer domains. Significant efforts 640 

addressing practical, ethical and legal concerns must be made to allow safe, efficient, and accountable 641 

implementation of AI. An effective collaborative partnership among stakeholders, AI, biology and 642 

clinical scientists, clinicians, policymakers, investors, and patients, is of paramount importance if the 643 

full potential of AI to be realised. 644 

9 Opinion 645 

 AI is a broad spectrum of emerging and evolving tools utilising computational algorithms, which 646 

offer exciting opportunities with potential significant challenges. 647 

 AI research has been utilising data collected for other purposes that might be also biased and 648 

not inclusive which could limit its ability and mask important discoveries. 649 

 AI research is largely focused on discovering AL algorithms and models and identifying the ones 650 

best performing in training data. 651 

 AI research focus in gynaecology oncology requires urgent readjustment to address the crucial 652 

issues of clinical needs and patients’ priorities. 653 

 There have been some examples of joint efforts of AI scientists with biologists, clinical scientists, 654 

and clinicians to produce meaningful and applicable research. This could form a model to guide 655 

future efforts via partnerships among investigators, investors, clinicians, policymakers, and 656 

patients. 657 

 AI implementation could be hindered unless serious issues with ethical, legal and security 658 

implications are addressed and acted upon. 659 

 The RCOG is advised that preparedness for AI-based technology in time is crucial. We 660 

recommend the RCOG educates members and fellows for an AI future, and incorporate AI into 661 

the training curriculum. 662 

 The RCOG could consider, in line with other medical colleges, establishing a dedicated 663 

committee or task-specific group overseeing AI research, progress and implementation. 664 

 665 
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10 Artificial intelligence abbreviations 666 

AI  Artificial Intelligence 667 
ML  Machine Learning 668 
DL  Deep Learning 669 
RF  Random Forest 670 
NN  Neural Network 671 
RNN  Residual Neural Network 672 
PNN  Probabilistic Neural Network 673 
DNN  Deep Neural Network 674 
DCNN  Deep Convolutional Neural Network 675 
MICNN  Multiple Instance Convolutional Neural Network 676 
GAN  Generative Adversarial Network 677 
SVM  Support Vector Machine 678 
KNN  K-nearest Number classifier 679 
DT  Decision Tree 680 
CT  Conditional Tree 681 
LR  Logistic Regression 682 
LMP  Late Multiparametric 683 
MRMR  Minimum Redundancy - Maximum Relevance 684 
XGBoost Extreme Gradient Boost  685 
GBDT  Gradient Boosting Decision Tree 686 
GBM  Gradient Boosting Machine 687 
MrMc  Minimum Redundancy Maximum Correlation 688 
LASSO  Least Absolute Shrinkage Selection Operator 689 
 690 

 691 

  692 
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